10.下列三角函數(shù):①sin(nπ+$\frac{4π}{3}$)(n∈Z);②sin(2nπ+$\frac{π}{3}$)(n∈Z);③sin[(2n+1)π-$\frac{π}{6}$](n∈Z);④sin[(2n+1)π-$\frac{π}{3}$](n∈Z).其中函數(shù)值與sin$\frac{π}{3}$的值相同的是( 。
A.①②B.②④C.①③D.①②④

分析 求出函數(shù)值判斷即可.

解答 解:①sin(nπ+$\frac{4π}{3}$)=$\left\{\begin{array}{l}-\frac{\sqrt{3}}{2},n為偶數(shù)\\ \frac{\sqrt{3}}{2},n為奇數(shù)\end{array}\right.$;
②sin(2nπ+$\frac{π}{3}$)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$;
③sin[(2n+1)π-$\frac{π}{6}$]=sin$\frac{5π}{6}=\frac{1}{2}$;
④sin[(2n+1)π-$\frac{π}{3}$]=sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
其中函數(shù)值與sin$\frac{π}{3}$的值相同的是:②④.
故選:B.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求f(x)=2x3-3x2-12x+26的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若動(dòng)點(diǎn)P在直線l:x=-2$\sqrt{2}$上,過(guò)P作直線交橢圓$\frac{x^2}{12}+\frac{y^2}{4}$=1于M,N兩點(diǎn),使得|PM|=|PN|,再過(guò)P作直線l′⊥MN,則l′恒過(guò)定點(diǎn)Q,點(diǎn)Q的坐標(biāo)為(-$\frac{4\sqrt{2}}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若P(m,n)為橢圓$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ為參數(shù))上的點(diǎn),則m+n的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a,b是異面直線,A,B∈a,C,D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,則a,b所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.從某校2100名學(xué)生隨機(jī)抽取一個(gè)30名學(xué)生的樣本,樣本中每個(gè)學(xué)生用于課外作業(yè)的時(shí)間(單位:min)依次為:75,80,85,65,95,100,70,55,65,75,85,110,120,80,85,80,75,90,90,95,70,60,60,75,90,95,65,75,80,80.該校的學(xué)生中作業(yè)時(shí)間超過(guò)一個(gè)半小時(shí)(含一個(gè)半小時(shí))的頻率是0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是(  )
A.正數(shù)的n次方根是正數(shù)B.負(fù)數(shù)的n次方根是負(fù)數(shù)
C.0的n次方根是0D.$\root{n}{a}$是無(wú)理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a7=9a3,則$\frac{{S}_{9}}{{S}_{5}}$=( 。
A.9B.5C.$\frac{18}{5}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x+l)的定義域?yàn)椋?,+∞),則f(1-x)的定義域?yàn)椋?∞,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案