年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
某市旅游部門開發(fā)一種旅游紀(jì)念品,每件產(chǎn)品的成本是元,銷售價是元,月平均銷售件.通過改進(jìn)工藝,產(chǎn)品的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果產(chǎn)品的銷售價提高的百分率為,那么月平均銷售量減少的百分率為.記改進(jìn)工藝后,旅游部門銷售該紀(jì)念品的月平均利潤是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,確定該紀(jì)念品的售價,使旅游部門銷售該紀(jì)念品的月平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
已知函數(shù)的定義域?yàn)閇0,2]
(1)求的值
(2)若函數(shù)的最大值是,求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知α,β是方程4x2-4tx-1=0(t∈R)的兩個實(shí)數(shù)根,函數(shù)f(x)=的定義域?yàn)閇α,β].
(1)判斷f(x)在[α,β]上的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)g(t)=maxf(x)-minf(x),求函數(shù)g(t)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-xm,且f(4)=-.
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=()x,
函數(shù)y=f-1(x)是函數(shù)y=f(x)的反函數(shù).
(1)若函數(shù)y=f-1(mx2+mx+1)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時,求函數(shù)y=[f(x)]2-2af(x)+3的最小值g(a);
(3)是否存在實(shí)數(shù)m>n>3,使得g(x)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2]?若存在,求出m、n的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)為奇函數(shù),a為常數(shù)。
(1) 求a的值;
(2) 證明在區(qū)間上為增函數(shù);
(3) 若對于區(qū)間上的每一個的值,不等式恒成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com