6.已知點(diǎn)A(-2,3),B(4,6),$\overrightarrow{O{A}_{1}}$=$\frac{1}{2}$$\overrightarrow{OA}$,$\overrightarrow{O{B}_{1}}$=$\frac{1}{2}$$\overrightarrow{OB}$,求$\overrightarrow{{A}_{1}{B}_{1}}$的坐標(biāo).

分析 先求出$\overrightarrow{O{A}_{1}}$,$\overrightarrow{O{B}_{1}}$的坐標(biāo),從而求出$\overrightarrow{{A}_{1}{B}_{1}}$的坐標(biāo)即可.

解答 解:$\overrightarrow{O{A}_{1}}$=$\frac{1}{2}$$\overrightarrow{OA}$=(-1,$\frac{3}{2}$),
$\overrightarrow{O{B}_{1}}$=$\frac{1}{2}$$\overrightarrow{OB}$=(2,3),
∴$\overrightarrow{{A}_{1}{B}_{1}}$=(2,3)-(-1,$\frac{3}{2}$)=(3,$\frac{3}{2}$).

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖所示是函數(shù)y=2sin(ωx+φ)(ω>0,|φ|<π)的圖象的一部分,求
(1)ω,φ的值.
(2)函數(shù)圖象的對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在平面直角坐標(biāo)系xOy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)A,C關(guān)于y軸對(duì)稱(chēng),點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱(chēng).
(1)若橢圓的離心率為$\frac{\sqrt{2}}{2}$,且A($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)D為直線(xiàn)BC與x軸的交點(diǎn),E為橢圓上一點(diǎn),且A,D,E三點(diǎn)共線(xiàn),若直線(xiàn)AB,BE的斜率分別為k1,k2,試問(wèn),k1•k2是否為定值?若是,求出該定值;若不是,請(qǐng)加以說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知二次函數(shù)y=x2-2ax+3,x∈[-1,1],設(shè)最大值為g(a),最小值為h(a).
(1)求g(a).
(2)求h(a).
(3)設(shè)a∈[0,1],若對(duì)任意的g(a),h(a),不等式g(a)log2m+2h(a)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知點(diǎn)A(1,2),B(5,-2),且$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{AB}$,求向量$\overrightarrow{a}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知A(-3,6),B(3,-6),則$\overrightarrow{AB}$=(6,-12),|$\overrightarrow{BA}$|=6$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在菱形ABCD中,∠DAB=60°,E為AD的中點(diǎn),正方形DBFG所在平面與平面ABCD垂直.
(1)求證:BE⊥平面BCF;
(2)求直線(xiàn)AF與平面BCG所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{5}$=1有共同焦點(diǎn),過(guò)點(diǎn)(3$\sqrt{2}$,$\sqrt{2}$)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)0<a<$\frac{1}{2}$,則1-a2,1+a2,$\frac{1}{1-a}$,$\frac{1}{1+a}$按從小到大的順序排列為$\frac{1}{1+a}$<1-a2<1+a2<$\frac{1}{1-a}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案