在△ABC中,已知tanA•tanB>1,則△ABC是(  )
A、直角三角形
B、鈍角三角形
C、銳角三角形
D、最小內(nèi)角大于45°的三角形
考點:正弦定理
專題:計算題,解三角形
分析:由條件可知A、B均為銳角,化切為弦可得cosC>0,從而判斷C也為銳角.
解答: 解:在△ABC中,由tanA•tanB>1>0,知A、B均為銳角,
tanA•tanB>1即
sinA
cosA
sinB
cosB
>1

∴sinAsinB>cosAcosB,即cos(A+B)<0,-cosC<0,
∴cosC>0,則C也為銳角,
故選:C.
點評:該題考查正弦定理及其應(yīng)用,考查兩角和的余弦函數(shù),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓臺的母線長是3,側(cè)面展開后所得扇環(huán)的圓心角為180°,側(cè)面積為10π,則圓臺的高為
 
,上下底面的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
2
,sinβ=
3
5
,β∈(
π
2
,π),則tan(2α-β)=( 。
A、
7
24
B、-
7
24
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=log1.20.3,b=log1.20.8,c=1.50.5,則a,b,c的大小關(guān)系為(  )
A、a>b>c
B、c>a>b
C、a>c>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,若函數(shù)y=ex+3ax,x∈R有大于零的極值點,則( 。
A、a>-3
B、a<-3
C、a>-
1
3
D、a<-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足的前n項和Sn=n2+n+1,那么它的通項公式為an=( 。
A、an=n+1
B、an=
3,n=1
n+1,n≥2
C、an=2n
D、an=
3,n=1
2n,n≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,當(dāng)xy最大時,該幾何體的體積為( 。
A、2
7
B、4
7
C、8
7
D、16
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“-3<m<-1”是方程
x2
2+m
+
y2
m+1
=1表示雙曲線的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意a,b,c∈R+,且a2+b2+c2=1,求證:a+b+
2
c≤2.

查看答案和解析>>

同步練習(xí)冊答案