分析 可知f(x)在R上是偶函數(shù),且在[0,+∞)上是增函數(shù);從而可得|a-2|<|4-a2|,從而解得.
解答 解:當(dāng)x<0時,f(x)=ln(-x+1)-$\frac{1}{1+{x}^{2}}$=f(-x);
當(dāng)x>0時,f(x)=ln(x+1)-$\frac{1}{1+{x}^{2}}$=ln(-(-x)+1)-$\frac{1}{1+{x}^{2}}$=f(-x);
故f(x)在R上是偶函數(shù);
當(dāng)x>0時,f′(x)=$\frac{1}{x+1}$+$\frac{2x}{(1+{x}^{2})}$>0,
故f(x)在[0,+∞)上是增函數(shù);
∵f(a-2)<f(4-a2),
∴|a-2|<|4-a2|,
即|a+2|>1且|a-2|≠0,
即a>2或a<-3或-1<a<2;
故答案為:a>2或a<-3或-1<a<2.
點評 本題考查了分段函數(shù)的性質(zhì)的判斷與應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 直角三角形 | ||
C. | 鈍角三角形 | D. | 不含60°的等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ③④ | B. | ②④ | C. | ①③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com