考點:數(shù)列的求和,等差關(guān)系的確定,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)運用等差數(shù)列的通項公式,求出an,考慮
=
(
-
),再化簡S
n,再求S
67;
(2)運用數(shù)學歸納法證明,當n=2時,化簡得到a
2-a
3=a
1-a
2即a
1,a
2,a
3成等差數(shù)列,令n=k時,且a
k+1=a
1+kd,證明當n=k+1時,即k(a
k+2-a
k+1)=a
k+1-a
1,由假設(shè)即得a
k+2-a
k+1=d,從而得證.
解答:
(1)解:若數(shù)列{a
n}是首項為1,公差為
的等差數(shù)列,
則a
n=1+
(n-1)=
n-,
則
=
=
(
-
),
則S
67=
(
-+-++…+-)=
(
-)
=
(
-1).
(2)證明:當n=2時,S
2=
=
+
即
=
∴a
2-a
3=a
1-a
2即a
1,a
2,a
3成等差數(shù)列
令n=k時,
+
+…+
=
且又{a
k}為等差數(shù)列且a
k+1=a
1+kd
當n=k+1時,
+
+…
+
=
即有
+
=
k•
=
即k(a
k+2-a
k+1)=a
k+1-a
1∵a
k+1=a
1+kd即a
k+2-a
k+1=d
∴n=k+1時,{a
k+1}也是等差數(shù)列,
綜上得,{a
n}是等差數(shù)列.
點評:本題主要考查等差數(shù)列的通項和裂項相消求和法,同時考查運用數(shù)學歸納法證明數(shù)列問題,注意解題步驟,注意運用假設(shè),本題屬于中檔題.