若lg2x-(lg2+lg3)lgx+lg2•lg3=0,則x1+x2=
 
考點:對數(shù)的運算性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:對方程的左式因式分解,可求得lgx的值,從而求得方程的解.
解答: 解:對方程變形得:(lgx-lg3)(lgx-lg2)=0⇒lgx=lg3或lgx=lg2,
∴方程的解為x=3或2,
∴x1+x2=3+2=5.
故答案為:5.
點評:本題考查了關(guān)于對數(shù)的一元二次方程的解,利用因式分解是解方程的抽樣方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則sin2α+sinαcosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)若干個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這些函數(shù)為“互為生成函數(shù)”.給出下列函數(shù):
①f(x)=
2
sin(x-
π
4
);
②f(x)=
2
(sinx+cosx);
③f(x)=
2
sinx+1;
④f(x)=sinx.
則其中屬于“互為生成函數(shù)”的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7
若由資料知y對x呈線性相關(guān)關(guān)系,線性回歸方程y=1.23x+b,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
lnx
(x≥e)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(-x+
π
3
),x∈(0,π)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
ex
-
a
x
(a∈R).若存在實數(shù)m,n,使得f(x)≥0的解集恰為[m,n],則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則
f′(-3)
f′(1)
=(  )
A、-1B、2C、-5D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集 U={1,2,3,4,5,6,7},M={2,3,4,6},N={1,4,5},則(∁UM)∩N 等于( 。
A、{1,2,4,5,7}
B、{1,4,5}
C、{1,5}
D、{1,4}

查看答案和解析>>

同步練習(xí)冊答案