若過拋物線y2=4x焦點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),O為原點(diǎn),且∠AOB=120°,則△AOB的面積為
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(x1,y1)、B(x2,y2),算出拋物線的焦點(diǎn)坐標(biāo),從而可設(shè)直線AB的方程為y=k(x-1),與拋物線方程聯(lián)解消去x可得y2-
4
k
y-4=0,利用根與系數(shù)的關(guān)系算出y1y2=-4,x1x2=1,再結(jié)合向量的數(shù)量積公式,即可得出結(jié)論..
解答: 解:根據(jù)題意,拋物線y2=4x的焦點(diǎn)為F(1,0).
設(shè)直線AB的斜率為k,可得直線AB的方程為y=k(x-1),
代入拋物線方程消去x,得y2-
4
k
y-4=0,
設(shè)A(x1,y1)、B(x2,y2),由根與系數(shù)的關(guān)系可得y1y2=-4,x1x2=1,
設(shè)|OA|=m,|OB|=n,則
∵∠AOB=120°,
OA
OB
=mncos120°=-
1
2
mn,
OA
OB
=x1x2+y1y2=-3,
∴mn=6,
∴△AOB的面積為
1
2
mnsin60°=
3
3
2

故答案為:
3
3
2
點(diǎn)評(píng):本題考查拋物線定義與標(biāo)準(zhǔn)方程、直線與圓錐曲線位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[a,b]上的函數(shù),若存在c∈(a,b),使得f(x)在[a,c]上單調(diào)遞增,在[c,b]上單調(diào)遞減,則稱f(x)為[a,b]上單峰函數(shù),c為峰點(diǎn).
(1)已知f(x)=
1
4
(x2-2x)(x2-2x+2t2)為[a,b]上的單峰函數(shù),求t的取值范圍及b-a的最大值;
(2)設(shè)fn(x)=2014+px-(x+
x2
2
+
x3
3
+…+
xn+1
n+1
+
p3xn+4
n+4
),其中n∈N*,p>2.
①證明:對(duì)任意n∈N*,fn(x)為[0,1-
1
p
]上的單峰函數(shù);
②記函數(shù)fn(x)在[0,1-
1
p
]上的峰點(diǎn)為cn,n∈N*,證明:cn<cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x+3
x
 
(1)寫出此函數(shù)的定義域和值域
(2)證明函數(shù)在(0,+∞)為單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x2=2y+5,y2=2x+5(x≠y),則x3-2x2y2+y3的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正三棱柱的三視圖如圖所示,該三棱柱的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1到100之間的整數(shù)中,所有能被3整除的數(shù)字之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,A:B:C=1:1:4,則a:b:c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)在整個(gè)定義域上是減函數(shù),若f(1-2a)<f(3a-1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足
y≤1
y≥|x-1|
,且μ=ax+2y(a>0且a≠1)的最大值為16,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案