f(x)=
x+3
x
 
(1)寫出此函數(shù)的定義域和值域
(2)證明函數(shù)在(0,+∞)為單調(diào)遞減函數(shù).
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用,導數(shù)的綜合應(yīng)用
分析:(1)求定義域就是使函數(shù)有意義,所以定義域很容易求出,原函數(shù)變成f(x)=1+
1
x
,
1
x
≠0,所以f(x)≠1,所以值域也能求出.
(2)可以利用導數(shù)證明原函數(shù)在(0,+∞)上的單調(diào)性.
解答: 解:(1)要使函數(shù)f(x)=
x+3
x
=1+
3
x
有意義,則x≠0,∵
3
x
≠0
,∴f(x)≠1;
∴函數(shù)f(x)的定義域是:{x|x≠0},值域是:(-∞,1)∪(1,+∞).
(2)f′(x)=-
3
x2
<0,∴函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
點評:本題考查定義域、值域的概念,以及函數(shù)導數(shù)的符號與函數(shù)單調(diào)性的關(guān)系.利用導數(shù)證明或判斷函數(shù)單調(diào)性時,需正確求出導數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且角A,B,C成等差數(shù)列
(1)若a=2c=2,求b的值;
(2)若△ABC的面積為
3
,且b=2,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p≠0,數(shù)列{an}滿足:a1=2,an+1=pan+1-p(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)bn=2-qn-1(n∈N*),當n≥2時,p,q都在區(qū)間(0,1)內(nèi)變化,且滿足p2n-2+q2n-2≤1時,求所有點(an,bn)所構(gòu)成圖形的面積;
(3)當p>1時,證明:
n
p
a1
a2
+
a2
a3
+…+
an
an+1
n+1
p
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:x2-2x-3<0;q:m<x<m+6,
(1)求不等式x2-2x-3<0的解集;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票.股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標系xoy,則股價y(元)和時間x的關(guān)系在ABC段可近似地用解析式y(tǒng)=asin(ωx+φ)+b(0<φ<π)來描述,從C點走到今天的D點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標志,且D點和C點正好關(guān)于直線l:x=34對稱.老張預計這只股票未來的走勢如圖中虛線所示,這里DE段與ABC段關(guān)于直線l對稱,EF段是股價延續(xù)DE段的趨勢(規(guī)律)走到這波上升行情的最高點F.現(xiàn)在老張決定取點A(0,22),點B(12,19),點D(44,16)來確定解析式中的常數(shù)a,b,ω,φ,并且求得ω=
π
72

(1)請你幫老張算出a,b,φ,并回答股價什么時候見頂(即求F點的橫坐標)
(2)老張如能在今天以D點處的價格買入該股票3000股,到見頂處F點的價格全部賣出,不計其它費用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=cos(2x-
π
6
)圖象的一條對稱軸是x=
12

②在同一坐標系中,函數(shù)y=sinx與y=lgx的交點個數(shù)為3個;
③將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個單位長度可得到函數(shù)y=sin2x的圖象;
④存在實數(shù)x,使得等式sinx+cosx=
3
2
成立;
其中正確的命題為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,B=45°,AC=
10
,cosC=
2
5
5

(Ⅰ)求sinA的值和邊AB的長;
(Ⅱ)設(shè)AB的中點為D,求中線CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若過拋物線y2=4x焦點F作直線l交拋物線于A,B兩點,O為原點,且∠AOB=120°,則△AOB的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)α=cos420°,函數(shù)f(x)=
ax, x<0
logax , x≥0
,則f(
1
4
)+f(log2
1
6
)的值等于
 

查看答案和解析>>

同步練習冊答案