分析 根據(jù)A,B,D三點共線,得出t+(2+t)=1,求出t的值,化簡$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$,D是AB的中點,即可求出面積比是多少.
解答 解:∵A,B,D三點共線,且$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,
∴t+(2+t)=1,
解得t=-$\frac{1}{2}$;
∴$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{CA}$+$\frac{3}{2}$$\overrightarrow{CB}$,
∴$\overrightarrow{CD}$-$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{CB}$-$\overrightarrow{CA}$),
即$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$;如圖所示,
∴BD=$\frac{1}{2}$AB,即BD=AD;
∴△CDB的面積和△CDA的面積之比為1:1.
故答案為:1:1.
點評 本題考查了平面向量的應用問題,解題的關鍵是利用三點共線求出t的值,化簡$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出D是AB的中點,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,-2$\sqrt{5}$+3) | B. | (-∞,-2$\sqrt{5}$+3) | C. | (-$\frac{1}{2}$,4-$\sqrt{17}$) | D. | (-∞,4-$\sqrt{17}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com