(1)已知:a,b,x均為正數(shù),且a>b,求證:1<
a+x
b+x
a
b

(2)若a,b,x均為正數(shù),且a<b,對真分?jǐn)?shù)
a
b
,給出類似于第(1)小問的結(jié)論;(不需證明)
(3)求證:△ABC中,
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
<2.
考點:不等式的證明,正弦定理
專題:不等式的解法及應(yīng)用
分析:(1)根據(jù)不等式的性質(zhì)即可證明1<
a+x
b+x
a
b
;
(2)類比(1)的不等式,即可得到結(jié)論,
(3)根據(jù)正弦定理利用放縮法即可證明不等式.
解答: 解:(1)∵a>b,∴a+x>b+x>0,則
a+x
b+x
>1,
又ax>bx.a(chǎn)x+ab>bx+ab,即a(b+x)>b(x+a),即
a+x
b+x
a
b

綜上1<
a+x
b+x
a
b
;
(2)
a
b
a+x
b+x
<1;
(3)在△ABC中,sinA<sinB+sinC,sinB<sinA+sinC,sinC<sinA+sinB,
由(2)得
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
2sinA
sinA+sinB+sinC
+
2sinB
sinA+sinB+sinC
+
2sinC
sinA+sinB+sinC
=2.
即不等式成立.
點評:本題主要考查不等式的證明,要求熟練掌握常見不等式證明的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠ABC=90°,SA=AB=1,BC=
2

(Ⅰ)求證:BA⊥平面SAD;
(Ⅱ)求異面直線AD與SC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=A1B=2,頂點A1在底面ABC上的射影恰好為點B.
(1)求三棱柱的表面積;
(2)在棱B1C1上確定一點P,使AP=
14
,并求出二面角P-AB-A1的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,已知角A為一個銳角,且
3
b=2a•sinB.
(1)求角A;
(2)若a=
3
,b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),前n項和為Sn,且滿足2Sn=an2+n-4(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y=0,若x=
2
3
時,y=f(x)有極值.
(1)求y=f(x)的解析式;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域為[λm,λn],則稱f(x)為“λ倍函數(shù)”.
(Ⅰ)若函數(shù)f(x)=x3為“1倍函數(shù)”,求符合條件的區(qū)間[m,n].
(Ⅱ)若函數(shù)f(x)=k+
x+2
為“1倍函數(shù)”,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于實數(shù)x的不等式2x2-7x-4>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q=
1
2
,前n項和為Sn,則
S4
a2
=
 

查看答案和解析>>

同步練習(xí)冊答案