某中學(xué)舉行了一次“環(huán)保知識競賽”,全校學(xué)生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 分組 頻數(shù) 頻率
第1組 [50,60) 8 0.16
第2組 [60,70) a
第3組 [70,80) 20 0.40
第4組 [80,90) 0.08
第5組 [90,100] 2 b
合計
(1)寫出a,b,x,y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的2名同學(xué)來自同一組的概率;
(3)在(2)的條件下,設(shè)ξ表示所抽取的2名同學(xué)中來自第5組的人數(shù),求ξ的分布列及其數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)利用頻率=
頻數(shù)
樣本容量
×100%,及
頻率
組距
表示頻率分布直方圖的縱坐標(biāo)即可求出a,b,x,y;
(2)由(1)可知第四組的人數(shù),已知第五組的人數(shù)是2,利用組合的計算公式即可求出從這6人中任選2人的種數(shù),再分兩類分別求出所選的兩人來自同一組的情況,利用互斥事件的概率和古典概型的概率計算公式即可得出;
(3)由(2)可知,ξ的可能取值為0,1,2,再利用組合的計算公式及古典概型的計算公式、數(shù)學(xué)期望的計算公式即可得出.
解答: 解:(1)由題意可知,樣本容量=
8
0.16
=50,∴b=
2
50
=0.04,
第四組的頻數(shù)=50×0.08=4,
∴a=50-8-20-2-4=16.
y=
0.04
10
=0.004,x=
16
50
×
1
10
=0.032.
∴a=16,b=0.04,x=0.032,y=0.004.
(2)由(1)可知,第4組有4人,第5組有2人,共6人.
從競賽成績是80分)以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)有
C
2
6
=15
種情況.    
設(shè)事件A:隨機(jī)抽取的2名同學(xué)來自同一組,則P(A)=
C
2
4
+
C
2
2
C
2
6
=
7
15

所以,隨機(jī)抽取的2名同學(xué)來自同一組的概率是
7
15
. 
(3)由(2)可知,ξ的可能取值為0,1,2,
P(ξ=0)=
C
2
4
C
2
6
=
6
15
=
2
5
,P(ξ=1)=
C
1
4
C
1
2
C
2
6
=
8
15
,P(ξ=2)=
C
2
2
C
2
6
=
1
15

所以,ξ的分布列為
ξ 0 1 2
P
2
5
8
15
1
15
所以,Eξ=0×
2
5
+1×
8
15
+2×
1
15
=
2
3
點(diǎn)評:熟練掌握頻率=
頻數(shù)
樣本容量
×100%,及
頻率
組距
表示頻率分布直方圖的縱坐標(biāo)、頻率之和等于1、互斥事件的概率、組合的計算公式及古典概型的計算公式、數(shù)學(xué)期望的計算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集I=R,T={x|x2<x},M={x|x∉T},則M等于( 。
A、{x|x≥1}
B、{x|x>1}
C、{x|-1≤x≤0}
D、{x|x≥1或x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為半圓的直徑,P為半圓上一點(diǎn),|AB|=10,∠PAB=a,且sina=
4
5
,建立適當(dāng)?shù)淖鴺?biāo)系.
(1)求A、B為焦點(diǎn)且過P點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.
(2)動圓M過點(diǎn)A,且與以B為圓心,以2
5
為半徑的圓相外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形AOC的周長是6,中心角是1弧度,則該扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為圓O上三點(diǎn),線段CO的延長線與線段AB有交點(diǎn),若
OC
=m
OA
+n
OB
,則m+n的范圍是( 。
A、(0,1)
B、(1,+∞)
C、(-1,0)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ADEF與梯形ABCD所在的閏面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點(diǎn).
(I)求證:BM∥平面ADEF;
(Ⅱ)求平面BEC與平面ADEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中點(diǎn).
(Ⅰ)求證:A1B∥平面AEC1
(Ⅱ)若棱AA1上存在一點(diǎn)M,滿足B1M⊥C1E,求AM的長;
(Ⅲ)求平面AEC1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
(x-y+1)(x+y-1)≥0
-2≤x≤2
表示平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,已知AB=a,BC=b(b<a),AB,AD,CD,CB上分別截取AE,AH,CG,CF都等于x,記四邊形EFGH的面積為f(x).
(1)求f(x)的解析式和定義域;
(2)當(dāng)x為何值時,四邊形EFGH的面積最大?并求出最大面積.

查看答案和解析>>

同步練習(xí)冊答案