如圖,AB為半圓的直徑,P為半圓上一點(diǎn),|AB|=10,∠PAB=a,且sina=
4
5
,建立適當(dāng)?shù)淖鴺?biāo)系.
(1)求A、B為焦點(diǎn)且過P點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.
(2)動圓M過點(diǎn)A,且與以B為圓心,以2
5
為半徑的圓相外切,求動圓圓心M的軌跡方程.
考點(diǎn):軌跡方程,橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)建立如圖所示的直角坐標(biāo)系,利用直角三角形的邊角關(guān)系即可得到|PB|,利用勾股定理即可得到|PA|,從而得到2a,|AB|=2c,再利用b2=a2-c2即可得到橢圓的標(biāo)準(zhǔn)方程.
(2)利用兩圓外切的性質(zhì)和雙曲線的定義即可得出.
解答: 解:(1)以直線AB為x軸,線段AB的垂直平分線為y軸,建立直角坐標(biāo)系.
∵AB為半圓的直徑,P為半圓上一點(diǎn),∴∠APB=90°.
在Rt△APB中,|PB|=|AB|sinα=10×
4
5
=8,∴|AP|=6.
∴|PA|+|PB|=6+8=14=2a,解得a=7,
∵2c=10,∴c=5,
∴b2=a2-c2=24.
∴橢圓的標(biāo)準(zhǔn)方程為:
x2
49
+
y2
24
=1

(2)由題意可得:|MB|-|MA|=2
5
<10=|AB|,
故動圓圓心M的軌跡在雙曲線的左支上,
∵2c=10,2a=2
5
,∴c=5,a=
5
(b)2=52-(
5
)2=20

其方程為
x2
5
-
y2
20
=1
(x≤-
5
)
點(diǎn)評:熟練掌握圓錐曲線的定義和性質(zhì)、兩圓外切的性質(zhì)、勾股定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x-5
2-x
>0的解集是( 。
A、{x|x>5或 x<2}
B、{x|2<x<5}
C、{x|x>5或 x<-2}
D、{x|-2<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知圓的方程是(x+4)2+(y-2)2=9,求經(jīng)過點(diǎn)P(-1,5)的切線方程.
(2)點(diǎn)P是橢圓
x2
16
+
y2
12
=1上的動點(diǎn),A(1,0),求PA的最大、小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
p
=(x,m),
q
=(x+a,1)
,二次函數(shù)f(x)=
p
q
+1
,關(guān)于x的不等式f(x)>(2m-1)x+1-m2的解集為(-∞,m)∪(m+1,+∞),其中m為非零常數(shù),設(shè)g(x)=
f(x)
x-1

(Ⅰ)求a的值;
(Ⅱ)若存在一條與y軸垂直的直線和函數(shù)Γ(x)=g(x)-x+lnx的圖象相切,且切點(diǎn)的橫坐標(biāo)x0滿足|x0-1|+x0>3,求實(shí)數(shù)m的取值范圍;
(Ⅲ)當(dāng)實(shí)數(shù)k取何值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值?并求出相應(yīng)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xsinx-1在(-
π
2
,
π
2
)
上的零點(diǎn)個數(shù)為( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的邊長為2,
BD
=4
BC
,則
AD
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形△ABC中,若
asinA
c
+
bsinB
c
<sinC
,則三角形ABC的形狀是
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)舉行了一次“環(huán)保知識競賽”,全校學(xué)生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì).請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 分組 頻數(shù) 頻率
第1組 [50,60) 8 0.16
第2組 [60,70) a
第3組 [70,80) 20 0.40
第4組 [80,90) 0.08
第5組 [90,100] 2 b
合計(jì)
(1)寫出a,b,x,y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的2名同學(xué)來自同一組的概率;
(3)在(2)的條件下,設(shè)ξ表示所抽取的2名同學(xué)中來自第5組的人數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列不等式
(1)a2+b2+5≥2(2a-b)(a,b∈R) 
(2)
b+c
a
+
c+a
b
+
a+b
c
≥6
(a,b,c為正實(shí)數(shù))

查看答案和解析>>

同步練習(xí)冊答案