19.函數(shù)f(x)=ax3-x在(-∞,+∞)內(nèi)是減函數(shù),則實數(shù)a的取值范圍是( 。
A.a≤0B.a<1C.a<2D.a<$\frac{1}{3}$

分析 根據(jù)f′(x)=3ax2-1<0恒成立,求得實數(shù)a的取值范圍.

解答 解:函數(shù)f(x)=ax3-x在(-∞,+∞)內(nèi)是減函數(shù),故f′(x)=3ax2-1<0恒成立,
故有3a≤0,求得a≤0,
故選:A.

點評 本題主要考查函數(shù)的單調(diào)性和導數(shù)的關系,利用導數(shù)研究函數(shù)的單調(diào)性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.若橢圓$\frac{x^2}{k+8}+\frac{y^2}{9}=1$的離心率$e=\frac{1}{3}$,則k的值為0或$\frac{17}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)圖象上的兩點P,Q的橫坐標依次為1,5,O為坐標原點,求S△OPQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求過橢圓內(nèi)點P(4,2)且被P平分的弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等差數(shù)列{an}中,且a3=-1,a6=-7.
(1)求{an}的通項an;
(2)求{an}前n項和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設實數(shù)a,b滿足a2+b2=1,則乘積ab的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.平行四邊形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,則該四邊形的面積為(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列不等式中成立的是( 。
A.若a>b,則ac2>bc2B.若a>b,則a2>b2
C.若a>b>0,則$\frac{a}$>$\frac{b+1}{a+1}$D.若a>b>0,則a+$\frac{1}$>b+$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=4x2-4ax+a2-2a+2.
(1)若函數(shù)f(x)在區(qū)間[0,2]上的最大值記為g(a),求g(a)的解析式;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最小值為3,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案