14.已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,其中a1=1,且a2、a4、a6+2成等比數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn,滿足2Sn+bn=1
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)如果cn=anbn,設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求證:Tn<Sn+$\frac{1}{4}$.

分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式、遞推關(guān)系即可得出;
(2)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 (1)解:設(shè)數(shù)列{an}的公差為d,
∵a2、a4、a6+2成等比數(shù)列;
∴${a}_{4}^{2}$=a2•(a6+2),
即$({a}_{1}+3d)^{2}$=(a1+d)(a1+5d+2),d>0.
解得d=1,
∴an=1+(n-1)=n.
由2Sn+bn=1,
得Sn=$\frac{1}{2}(1-_{n})$,
當(dāng)n=1時(shí),2S1+b1=1,解得b1=$\frac{1}{3}$,
當(dāng)n≥2時(shí),bn=Sn-Sn-1=$\frac{1}{2}(1-_{n})$-$\frac{1}{2}(1-_{n-1})$=$-\frac{1}{2}_{n}$+$\frac{1}{2}_{n-1}$,
∴$_{n}=\frac{1}{3}_{n-1}$,
∴數(shù)列{bn}是首項(xiàng)為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數(shù)列,
故$_{n}=\frac{1}{{3}^{n}}$.
(2)證明:由(1)知,cn=anbn=$\frac{n}{{3}^{n}}$,
∴Tn=$\frac{1}{3}+2×\frac{1}{{3}^{2}}+3×\frac{1}{{3}^{3}}$+…+$n×\frac{1}{{3}^{n}}$,
$\frac{1}{3}{T}_{n}$=$\frac{1}{{3}^{2}}+2×\frac{1}{{3}^{3}}$+…+$(n-1)×\frac{1}{{3}^{n}}$+$n×\frac{1}{{3}^{n+1}}$,
得$\frac{2}{3}{T}_{n}$=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$-$n×\frac{1}{{3}^{n+1}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$n×\frac{1}{{3}^{n+1}}$=$\frac{1}{2}$-$\frac{2n+3}{2×{3}^{n+1}}$,
∴Tn=$\frac{3}{4}$-$\frac{2n+3}{4×{3}^{n}}$.
又${S}_{n}+\frac{1}{4}$=$\frac{1}{2}(1-\frac{1}{{3}^{n}})$+$\frac{1}{4}$=$\frac{3}{4}$-$\frac{1}{2×{3}^{n}}$,
∵$\frac{2n+3}{4×{3}^{n}}$$>\frac{2}{4×{3}^{n}}$=$\frac{1}{2×{3}^{n}}$,
∴Tn<Sn+$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知?jiǎng)訄A圓心M與y軸相切,并且與圓C:x2+y2-2x=0外切.
(1)求動(dòng)圓圓心M的軌跡方程;
(2)過(guò)頂點(diǎn)H(-2,-1)做斜率為k的直線與M的軌跡交于不同兩點(diǎn)A、B,再過(guò)定點(diǎn)S(1,0)做斜率為k的直線與M的軌跡交于不同兩點(diǎn)C,D,并且A,B,C,D在y軸的同一側(cè),試探求$\frac{HA•HB}{CD}$是否為定值,請(qǐng)求出.若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.關(guān)于函數(shù)f(x)=$lg\frac{{{x^2}+1}}{|x|}$(x≠0),有下列命題:
①f(x)的最小值是lg2;
②其圖象關(guān)于y軸對(duì)稱;
③當(dāng)x>0時(shí),f(x)是增函數(shù);當(dāng)x<0時(shí),f(x)是減函數(shù);
④f(x)在區(qū)間(-1,0)和(1,+∞)上是增函數(shù),其中所有正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線的方程為y=x2,直線l的方程為2x-y-4=0.P為拋物線上的一個(gè)動(dòng)點(diǎn).
(1)若點(diǎn)P到直線l的距離最短,求點(diǎn)P的坐標(biāo):
(2)若動(dòng)點(diǎn)P到x軸的距離為d1,點(diǎn)P到直線l的距離為d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.隨機(jī)地從區(qū)間[0,1]任取兩數(shù),分別記為x、y,則x2+y2≤1的概率P=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,圓錐的底面圓心為O,直徑為AB,C為半圓弧AB的中點(diǎn),E為劣弧CB的中點(diǎn),且AB=2PO.
(1)求證PO⊥AC;
(2)求異面直線PA與OE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.正三棱錐的側(cè)棱長(zhǎng)為2$\sqrt{3}$,側(cè)棱與底面所成的角為60°,則該棱錐的體積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.集合A={x|$\frac{x+3}{2-x}$≥1},函數(shù)f(x)=log${\;}_{\frac{1}{2}}$$\frac{x-{a}^{2}-1}{x-a}$的定義域?yàn)榧螧;
(1)求集合A和B;
(2)若A?B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC的三個(gè)內(nèi)角A,B,C滿足sin(180°-A)=$\sqrt{2}$cos(B-90°),$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),求角A,B,C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案