已知一個(gè)幾何體的三視圖如圖所示,該幾何體的表面積為( 。
A、24πB、42π
C、38πD、39π
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:幾何體是圓柱中挖去一個(gè)同軸小圓柱,根據(jù)三視圖判斷大圓柱的底面半徑與小圓柱的底面半徑,判斷大、小圓柱的母線長(zhǎng),把數(shù)據(jù)代入圓柱的表面積公式計(jì)算.
解答: 解:由三視圖知:幾何體是圓柱中挖去一個(gè)同軸小圓柱,
其中大圓柱的底面半徑為2,小圓柱的底面半徑為1,
大、小圓柱的母線長(zhǎng)都是6,
∴幾何體的表面積S=2π×2×6+2π×1×6+2×(π×22-π×12)=24π+12π+6π=42π.
故選:B.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是拋物線y2=4x的焦點(diǎn),A是該拋物線上的一點(diǎn),且點(diǎn)A到拋物線準(zhǔn)線的距離是2,則A點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的(  )
A、充要條件
B、充分不必要
C、既不充分也不必要
D、必要不充分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
2
1-i
的共軛復(fù)數(shù)
.
z
的模為(  )
A、1
B、2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x<0,則 x+
1
x
的最大值為( 。
A、-4B、-3C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2-2x<0的解集是( 。
A、{x|0<x<2}
B、{x|0>x>2}
C、{x|0<x<2}
D、{x|x>0或x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={-1,0,1},N={0,1},則M∩N等于( 。
A、{-1,0,1}B、{0,1}
C、{1}D、{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
3
+i
1-
3
i
.
z
是z的共軛復(fù)數(shù),則z•
.
z
=( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)+1
(1)若函數(shù)y=f(x)的圖象關(guān)于直線x=t(t>0)對(duì)稱,求t的最小值;
(2)若存在x0∈[-
π
12
,
π
6
],使得mf(x0)-2=0成立,求實(shí)數(shù)m的取值范圍;
(3)若存在區(qū)間[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6個(gè)零點(diǎn),在滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案