【題目】為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).

(1)求他們選擇的項目所屬類別互不相同的概率;

(2)ξ3人中選擇的項目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.

【答案】(1) ;(2)分布列見解析,均值為2.

【解析】試題分析:(1)利用相互獨立事件同時發(fā)生的概率公式進行求解;(2)先由題意判定該變量服從二項分布,再利用二項分布的有關(guān)公式和線性變量的性質(zhì)進行求解.

試題解析:記第i名工人選擇的項目屬于基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程分別為事件Ai,BiCi,i1,2,3.由題意知A1,A2A3相互獨立,B1B2,B3相互獨立,C1,C2,C3相互獨立,Ai,BjCk(i,j,k1,2,3,且i,jk互不相同)相互獨立,且P(Ai),P(Bi)

P(Ci).

(1)他們選擇的項目所屬類別互不相同的概率

P3!·P(A1B2C3)6P(A1)P(B2)P(C3)××.

(2)設(shè)3名工人中選擇的項目屬于民生工程的人數(shù)為η

由已知,ηB,且ξ3η.

所以P(ξ0)P(η3)C3,

P(ξ1)P(η2)C2×

P(ξ2)P(η1)C××2,

P(ξ3)P(η0)C3.

ξ的分布列是

ξ

0

1

2

3

P

ξ的均值E(ξ)2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了緩解城市交通壓力,某市市政府在市區(qū)一主要交通干道修建高架橋,兩端的橋墩現(xiàn)已建好,已知這兩橋墩相距m米,余下的工程只需建兩端橋墩之間的橋面和橋墩.經(jīng)測算,一個橋墩的工程費用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費用為(2)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素.記余下工程的費用為y萬元.

(1)試寫出工程費用y關(guān)于x的函數(shù)關(guān)系式;

(2)m640米時,需新建多少個橋墩才能使工程費用y最小?并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)2x的定義域為(01](a為實數(shù)).

(1)a1,求函數(shù)yf(x)的值域;

(2)求函數(shù)yf(x)在區(qū)間(0,1]上的最大值及最小值,并求出當函數(shù)f(x)取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若存在、滿足.求證 (其中的導(dǎo)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 , )的左、右焦點分別為、,過點作圓 的切線,切點為,且直線與雙曲線的一個交點滿足,設(shè)為坐標原點,若,則雙曲線的漸近線方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)討論的單調(diào)性;

(2)若存在及唯一正整數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)成立; 成立. 如果“”為真,“”為假,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某城市街道上一側(cè)路邊邊緣某處安裝路燈,路寬米,燈桿4米,且與燈柱角,路燈采用可旋轉(zhuǎn)燈口方向的錐形燈罩,燈罩軸線與燈的邊緣光線(如圖, )都成角,當燈罩軸線與燈桿垂直時,燈罩軸線正好通過的中點

I求燈柱的高為多少米;

II設(shè),且,求燈所照射路面寬度的最小值

查看答案和解析>>

同步練習(xí)冊答案