等差數(shù)列的通項為an=2n-19,前n項和記為sn,求下列問題:
(1)求sn
(2)當n是什么值時,sn有最小值,最小值是多少?
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件求出等差數(shù)列的首項和公差,由此能求出Sn
(2)由Sn=n2-18n,利用配方法能求出n=9時,Sn有最小值S9=81.
解答: 解:(1)∵等差數(shù)列的通項為an=2n-19,
∴a1=2-19=-17,
a2=2×2-19=-15,
∴d=a2-a1=-15+17=2,
∴Sn=-17n+
n(n-1)
2
×2
=n2-18n.
(2)Sn=n2-18n
=(n-9)2-81,
∴n=9時,Sn有最小值S9=81.
點評:本題考查等差數(shù)列的前n項和的求法,考查當n是什么值時,sn有最小值,最小值是多少的求法,解題時要認真審題,注意配方法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C對應的邊分別為a,b,c,且滿足
a+b
c
=cosA+cosB
(1)判斷△ABC的形狀
(2)求
sinA•sinB
sinA+sinB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-x-2m+1>0
(1)若m=
3
2
,求出不等式的解集;
(2)若對任意實數(shù)x,已知不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了4次試驗,收集數(shù)據(jù)如下:
零件數(shù)x(個) 10 20 30 40
加工時間y(min) 60 68 75 85
(Ⅰ)求回歸方程;
(Ⅱ)如果加工的零件是50個,預測所要花費的時間.(參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公差大于0的等差數(shù)列{an}的前n項和為Sn,{an}的前三項分別加上1,1,3后順次成為某個等比數(shù)列的連續(xù)三項,S5=25.
①求數(shù)列{an}的通項公式;
②令bn=t Sn(t>0),若對一切n∈N*,都有bn+12>2bnbn+2,求t的取值范圍;
③是否存在各項都是正整數(shù)的無窮數(shù)列{cn},使cn+12>2cncn+2對一切n∈N*都成立,若存在,請寫出數(shù)列{cn}的一個通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a3-a1=3,a1+a2=3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若等差數(shù)列{bn}滿足b1=a2,b3=a2+a3,求數(shù)列{bn}的前10項的和T10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|x|-|x+1|.
(1)求不等式f(x)≤0的解集A;
(2)若不等式mx+m-1>0對任何x∈A恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中滿足到點A(3,0)距離為2,且到點B(0,4)距離為3的直線條數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+2xf′(1),則f′(2)=
 

查看答案和解析>>

同步練習冊答案