【題目】已知函數(shù)f(x)=lnx,g(x)=0.5x2﹣bx,(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上不單調(diào),求實數(shù)b的取值范圍.
【答案】
(1)解:因為f(x)=lnx,所以 ,因此f′(1)=1,
所以函數(shù)f(x)的圖象在點(1,0)處的切線方程為y=x﹣1,
由 得x2﹣2(b+1)x+2=0.
由△=4(b+1)2﹣8=0,得
(2)解:因為h(x)=f(x)+g(x)=lnx+0.5x2﹣bx(x>0),
所以 ,
若函數(shù)在定義域內(nèi)不單調(diào),則
可知h'(x)<0在(0,+∞)上有解,
因為x>0,設(shè)u(x)=x2﹣bx+1,因為u(0)=1>0,
則只要 解得b>2,
所以b的取值范圍是(2,+∞)
【解析】(1)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點,可得切線的方程,聯(lián)立二次函數(shù),由判別式為0,解方程即可得到b的值;(2)求出h(x)的導(dǎo)數(shù),可得h'(x)<0在(0,+∞)上有解,由二次函數(shù)的性質(zhì),可得b的不等式,即可得到b的范圍.
【考點精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)分析,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個結(jié)論: ①若x>0,則x>sinx恒成立;
②“若am2<bm2 , 則a<b”的逆命題為真命題
③m∈R,使f(x)=(m﹣1)x 是冪函數(shù),且在(﹣∞,0)上單調(diào)遞減
④對于命題p:x∈R使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0
其中正確結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校對高二600名學(xué)生進(jìn)行了一次知識測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);
(2)請你估算該年級學(xué)生成績的中位數(shù);
(3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在[60,70)和[80,90)的人中共抽取6人,再從6人中選2人,求2人分?jǐn)?shù)都在[80,90)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系下,已知曲線C1:ρ=cosθ+sinθ和曲線C2:ρsin(θ﹣ )= .
(1)求曲線C1和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時,求曲線C1和曲線C2公共點的一個極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù) 的單調(diào)遞減區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c.已知cosC=.
(1)若,求△ABC的面積;
(2)設(shè)向量,,且,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:
收入x/萬元 | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y/萬元 | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根據(jù)上表可得回歸直線方程x+,其中=0.76, ,據(jù)此估計,該社區(qū)一戶居民年收入為15萬元家庭的年支出為_____萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com