已知正方形的四個(gè)頂點(diǎn)分別為O(0,0),A(1,0),B(1,1),C(0,1),點(diǎn)D,E分別在線段OC,AB上運(yùn)動(dòng),且OD=BE,設(shè)AD與OE交于點(diǎn)G,則點(diǎn)G的軌跡方程是( 。
A、y=x(1-x)(0≤x≤1)
B、x=y(1-y)(0≤y≤1)
C、y=x2(0≤x≤1)
D、y=1-x2(0≤x≤1)
考點(diǎn):軌跡方程
專題:直線與圓
分析:設(shè)出D的坐標(biāo),求出直線AD、OE的方程,聯(lián)立求出交點(diǎn)坐標(biāo),消去參數(shù),即可得出點(diǎn)G的軌跡方程.
解答: 解:設(shè)D(0,m)(0≤m≤1),則E(1,1-m),
所以直線AD的方程為x+
y
m
=1
,直線OE的方程為y=(1-m)x,
設(shè)G(x,y),
則由
x+
y
m
=1
y=(1-m)x
,
可得
x=m
y=(1-m)m
,
消去m可得y=(1-x)x(0≤x≤1).
故選A.
點(diǎn)評(píng):本題考查直線方程,考查兩條直線的交點(diǎn),考查學(xué)生的計(jì)算能力,確定交點(diǎn)的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線L與直線2x+5y-1=0平行,且與坐標(biāo)軸圍成的三角形面積為5,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓C的方程為ρ=2acosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=3t+2
y=4t+2
(t為參數(shù)),若直線l與圓C相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)如圖,過(guò)⊙O外一點(diǎn)A分別作切線AC和割線AD,C為切點(diǎn),D,B為割線與⊙O的交點(diǎn),過(guò)點(diǎn)B作⊙O的切線交AC于點(diǎn)E.若BE⊥AC,BE=3,AE=4,則DB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)g(x)=lnx-
1
x
的零點(diǎn)所在區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線
3
x+y-2=0
與圓x2+y2=4相交所得的弦的長(zhǎng)為(  )
A、2
15
B、2
3
C、
15
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)原點(diǎn)O的橢圓有一個(gè)焦點(diǎn)F(0,4),且長(zhǎng)軸長(zhǎng)2a=10,求此橢圓的中心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+2x,x≥0
-x2+2x,x<0
,則使f(a2)>f(4a)成立的實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一塔形幾何體由若干個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊中點(diǎn),已知最底層正方體的棱長(zhǎng)為2,且該塔形的表面積(含C最底層正方體的底面面積)超過(guò)39,則該塔形中正方體的個(gè)數(shù)至少是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案