已知雙曲線C:x2-
y2
2
=1
,過點P(-1,-2)的直線交C于A,B兩點,且點P為線段AB的中點.
(1)求直線AB的方程;
(2)求弦長|AB|的值.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)可先設(shè)A(x1,y1),B(x2,y2),再分別代入雙曲線方程,作差即可求出直線斜率,進而可求直線方程.
(2)把(1)中所求直線方程代入雙曲線方程,利用根與系數(shù)關(guān)系,求x1,x2,再利用弦長公式求線段AB的長.
解答: 解(1)設(shè)A(x1,y1),B(x2,y2),則x1+x2=-2,y1+y2=-4,
x12-
y12
2
=1
x22-
y22
2
=1
作差得(x1+x2)(x1-x2)-
1
2
(y1+y2)(y1-y2)=0,
∴kAB=
y1-y2
x1-x2
=1,
∴直線AB方程為y=x-1.
(2)把y=x-1代入x2-
y2
2
=1
,消去y得x2+2x-3=0
∴x1=1,x2=-3,從而得|AB|=
1+1
•|x1-x2|=4
2
點評:本題考查點差法求中點弦方程以及弦長公式求弦長,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在區(qū)間[1,5]和[2,4]分別取一個數(shù),記為a,b,則方程
x2
a2
+
y2
b2
=1
表示焦點在x軸上且離心率小于
3
2
的橢圓的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD,AB=2,AC、BD交點為O,在ABCD內(nèi)隨機取一點E,則點E滿足OE<1的概率為( 。
A、
π
4
B、
1
4
C、
π
8
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知空間四邊形OABC,其對角線為OB,AC,M,N分別是邊OA,BC的中點,點G在線段MN上,若MG=λGN,且
OG
=
1
6
OA
+
1
3
OB
+
1
3
OC
,則λ等于( 。
A、2
B、1
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不同的直線l,m,不同的平面α,β,下命題中:
①若α∥β,l?α,則l∥β   
②若α∥β,l⊥α,則l⊥β
③若l∥α,m?α,則l∥m   
④若α⊥β,α∩β=l,m⊥l
則真命題的個數(shù)有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+ax+1(a∈R).
(Ⅰ)若a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=2x-1,若存在x1∈(0,+∞),對于任意x2∈[0,1],使f(x1)≥g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校共有400名高一學生,期中考試之后,為了解學生學習情況,用分層抽樣方法從中抽出c名學生的數(shù)學期中成績,按成績分組,制成如下的頻率分布表:(低于20分0人)
組號 第一組 第二組 第三組 第四組 第五組 第六組 第七組 第八組
合計
分組 [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
頻數(shù) 2 2 4 6 15 a 14 3 c
頻率 0.04 0.04 0.08 b 0.3 0.08 0.28 0.06 1
(Ⅰ)求a,b,c的值,并估計該校本次考試的數(shù)學平均分;
(Ⅱ)教導處為了解數(shù)學成績在60分以下的學生在學習數(shù)學時存在的問題,現(xiàn)決定從前四組中,利用分層抽樣抽取7人,再從這7人中隨機抽取兩人談話,求這兩人都來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M(1,-1)與點N(-1,1),動點P滿足:直線MP與NP的斜率之積等于-
1
3
.設(shè)直線MP與NP分別與直線x=3相交于A,B兩點,若點P使得△PMN與△PAB的面積相等,則點P的橫坐標是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P到兩定點A(1,0),B(2,0)的距離的比為
2
2

(1)求P的軌跡C的方程;
(2)是否存在過點A(1,0)的直線l交軌跡C于點M和N使得△MON的面積為
3
2
(O為坐標原點),若存在,求l的方程,若不存在說明理由.

查看答案和解析>>

同步練習冊答案