分析 ①利用賦值法進行求f(1)的值;
②根據函數的單調性的定義判斷f(x)在(0,+∞)上的單調性,并證明.
③根據函數單調性的性質解不等式即可.
解答 解:(1)令x=y=1,則f(1)=f(1)+f(1),解得f(1)=0.
(2)∵f(3)=1,
∴f(3)+f(3)=1+1=2,
即f(3×3)=f(9)=2,
則不等式f(x)+2≤f(x+8),
等價為f(x)+f(9)≤f(x+8),
即f(9x)≤f(x+8),
∵f(x)在(0,+∞)上的是增函數,
∴$\left\{\begin{array}{l}{x>0}\\{x+8>0}\\{9x≤x+8}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>0}\\{x>-8}\\{x≤1}\end{array}\right.$,解得0<x≤1,
即不等式的解集為(0,1].
點評 本題主要考查抽象函數的求值,利用賦值法是解決抽象函數的基本方法,利用函數的單調性的應用是解決本題的關鍵,考查學生的運算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 求有關x的方程ax2+bx+c=0的根 | B. | 求函數f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{x,x<0}\end{array}\right.$的值. | ||
C. | 求1+4+7+10+13的值 | D. | 解不等式ax+b>0(a≠0) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com