已知函數(shù)y=Asin(ωx+φ)在同一周期內(nèi),當x=
π
12
時,取得最大值y=3,當x=
12
時,取得最小值y=-3,則函數(shù)的解析式為( 。
A、y=3sin(2x-
π
3
B、y=3sin(
x
2
-
π
6
C、y=3sin(2x+
π
6
D、y=3sin(2x+
π
3
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)的最值求出A,由周期求出ω,由特殊點的坐標求出φ的值,可得函數(shù)的解析式.
解答: 解:由題意可得
1
2
T=
1
2
ω
=
12
-
π
12
,求得ω=2.
再根據(jù)函數(shù)的最大值、最小值可得A=3,
再把點(
π
12
,3)代入函數(shù)的解析式可得 3=3sin(
π
6
+φ),
∴sin(
π
6
+φ)=1,∴可取φ=
π
3
,∴函數(shù)的解析式為y=3sin(2x+
π
3
),
故選:D.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知(4
4
1
x
+
3x2
n展開式中的倒數(shù)第三項的二項式系數(shù)為45,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀下題的解題方法:
例題:已知x>0,y>0,且x+y=1,求
1
x
+
2
y
的最小值.
解:
1
x
+
2
y
=(x+y)(
1
x
+
2
y
)=1+
2x
y
+
y
x
+2≥3+2
2x
y
y
x
=3+2
2
,當且僅當
2x
y
=
y
x
x+y=1.
時,即
x=
2
-1
y=2-
2
.
時,取等號.∴當
x=
2
-1
y=2-
2
.
時,
1
x
+
2
y
取最小值,其最小值為3+2
2

類比上述解題方法,可求得函數(shù)f(x)=
4
x
+
9
1-2x
,x∈(0,
1
2
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗.根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸方程
y
=0.74x+50
零件數(shù)x(個)1020304050
加工時間y(min)62mn8189
則m+n的值為( 。
A、137B、129
C、121D、118

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=2014sin
2
,則a1+a2+…+a2014=(  )
A、2012B、2013
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|x+1|(2x-1)≥0的解集是( 。
A、[
1
2
,+∞)
B、(-∞,-1]∪[
1
2
,+∞)
C、{-1}∪[
1
2
,+∞)
D、[-1,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,運行相應的程序,如果輸入某個正整數(shù)n后,輸出的S∈(30,40),那么n的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(π-α)=-
12
13
,π<α<
2
,則tanα=(  )
A、
5
12
B、-
5
12
C、
12
5
D、-
12
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校有學生2000人,其中高一年紀的學生與高三年級的學生之比為3:4,從中抽取一個容量為40的樣本,高二年級恰好抽取了12人.求各年級的人數(shù)及高一年級、高三年級各抽取的人數(shù).

查看答案和解析>>

同步練習冊答案