若曲線C1:y=x2與曲線C2:y=aex(a>0)存在公切線,則a的取值范圍為(  )
A、[
8
e2
,+∞)
B、(0,
8
e2
]
C、[
4
e2
,+∞)
D、(0,
4
e2
]
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:分別求出兩個函數(shù)的導(dǎo)函數(shù),由兩函數(shù)在切點處的導(dǎo)數(shù)相等,并由斜率公式,得到由此得到m=2n-2,則4n-4=aen有解.再由導(dǎo)數(shù)即可進一步求得a的取值.
解答: 解:y=x2在點(m,m2)的切線斜率為2m,
y=aex在點(n,aen)的切線斜率為aen,
如果兩個曲線存在公共切線,那么:2m=aen
又由斜率公式得到,2m=
m2-aen
m-n
,
由此得到m=2n-2,
則4n-4=aen有解.
由y=4x-4,y=aex的圖象有交點即可.
設(shè)切點為(s,t),則aes=4,且t=4s-4=aes
即有切點(2,4),a=
4
e2
,
故a的取值范圍是:0<a≤
4
e2

故選D.
點評:本題考查利用導(dǎo)數(shù)研究曲線上某點的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),滿足:對?x∈R,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤
1
8
(x+2)2成立,又f(-2)=0,則b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序框圖中,若輸出S=
3
2
+
3
,則p的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的底面邊長是2,側(cè)棱長是
6
,且它的五個頂點都在同一個球面上,則此球的半徑是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
,
b
滿足(
a
+
b
)(2
a
-
b
)=0
,則
a
,
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log
1
2
2x-2
,求函數(shù)定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的單調(diào)區(qū)間y=(
1
3
)
x2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋子中放有大小和形狀相同的4個小球,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球2個,從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b,記事件A表示“a+b=2”,則事件A的概率為(  )
A、
1
5
B、
3
4
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則
BC
AD
的值為
 

查看答案和解析>>

同步練習(xí)冊答案