【題目】如圖,在四棱柱ABCDA1B1C1D1中,側(cè)棱AA1底面ABCD,AB∥DC

)求證:CD⊥平面ADD1A1;

)若直線AA1與平面AB1C所成角的正弦值為,求k的值.

【答案】)見解析(1

【解析】

試題()取CD的中點為E,連結(jié)BE,則ADEB為平行四邊形,所以ADBE=4k,所以BC2=BE2+EC2,所以BE⊥DC,所以ADBC垂直,AA1ABCD,所以AA1⊥CD,所以CD垂直面AA1D1D;()以D為原點,DADC,DD1軸,建立空間直角坐標系,寫出A、A1B1,C的坐標,求出面AB1C的一個法向量,算出向量坐標,計算出這兩個向量的夾角,再利用向量夾角與線面角關(guān)系,列出關(guān)于k的方程,若能解出k..

試題解析:()取CD的中點E,連結(jié)BE.

∵AB∥DE,ABDE3k,四邊形ABED為平行四邊形, 2

∴BE∥ADBEAD4k.

△BCE中,∵BE4kCE3k,BC5k,∴BE2CE2BC2,

∴∠BEC90°,即BE⊥CD,

∵BE∥AD∴CD⊥AD. 4

∵AA1平面ABCD,CD平面ABCD,

∴AA1⊥CD.又AA1∩ADA,

ADD1A1. 6

)以D為原點,,的方向為x,y,z軸的正方向建立如圖所示的空間直角坐標系,

所以,

設(shè)平面AB1C的法向量n(x,y,z),

則由

y2,得. 9

設(shè)AA1與平面AB1C所成角為θ,則

sin θ|cos,n|,

解得k1,故所求k的值為1. 12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點軸上,中心在坐標原點,長軸長為4,短軸長為.

1)求橢圓的標準方程;

2)是否存在過的直線,使得直線與橢圓交于,?若存在,請求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一名高二學生盼望2020年進入某名牌大學學習,假設(shè)該名牌大學有以下條件之一均可錄。孩2020年2月通過考試進入國家數(shù)學奧賽集訓(xùn)隊(集訓(xùn)隊從2019年10月省數(shù)學競賽一等獎中選拔):②2020年3月自主招生考試通過并且達到2020年6月高考重點分數(shù)線,③2020年6月高考達到該校錄取分數(shù)線(該校錄取分數(shù)線高于重點線),該學生具備參加省數(shù)學競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表

省數(shù)學競賽一等獎

自主招生通過

高考達重點線

高考達該校分數(shù)線

0.5

0.6

0.9

0.7

若該學生數(shù)學競賽獲省一等獎,則該學生估計進入國家集訓(xùn)隊的概率是0.2.若進入國家集訓(xùn)隊,則提前錄取,若未被錄取,則再按②、③順序依次錄取:前面已經(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達重點線才能錄。

(Ⅰ)求該學生參加自主招生考試的概率;

(Ⅱ)求該學生參加考試的次數(shù)的分布列及數(shù)學期望;

(Ⅲ)求該學生被該校錄取的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為梯形,AB//CD,,AB=AD=2CD=2,△ADP為等邊三角形.

(1)PB長為多少時,平面平面ABCD?并說明理由;

(2)若二面角大小為150°,求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、FEF=,則下列結(jié)論中錯誤的是(

A.ACBEB.EF平面ABCD

C.三棱錐A-BEF的體積為定值D.異面直線AE,BF所成的角為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.

1)求橢圓的方程;

2)設(shè)過點的直線與橢圓相交另一點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P-ABCD中,側(cè)面底面ABCD,,底面ABCD是直角梯形,

1)求證:平面PBD

2)設(shè)E為側(cè)棱PC上異于端點的一點,,試確定的值,使得二面角E-BD-P的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設(shè)點的直角坐標為,直線與曲線的交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下結(jié)論:

①命題“若,則”的逆否命題為“若,則”;

②“”是“”的充分條件;

③命題“若,則方程有實根”的逆命題為真命題;

④命題“若,則”的否命題是真命題.

則其中錯誤的是__________.(填序號)

查看答案和解析>>

同步練習冊答案