已知函數(shù)f(x)=ex-x,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[-1,2]上的最大值和最小值.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,指數(shù)函數(shù)單調(diào)性的應(yīng)用
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)由f′(x)=ex-1=0,解得x=0,從而求出其單調(diào)區(qū)間;
(2)由f(x)在[-1,0]上單調(diào)遞減,在[0,2]單調(diào)遞增,得到f(x)在x=0處取得極小值,f(x)在x=2處取到最大值.
解答: 解:(1)∵f′(x)=ex-1,
令f′(x)=0,
∴ex-1=0,
解得:x=0,
∴f(x)=ex-x的單調(diào)減區(qū)間是(-∞,0),增區(qū)間是[0,+∞);
(2)∵f(x)在[-1,0]上單調(diào)遞減,在[0,2]單調(diào)遞增
∴f(x)在x=0處取得極小值,f(0)=1,
f(x)在x=2處取到最大值,f(2)=e2-2,
∴f(x)的最大值e2-2,最小值1.
點評:本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,求函數(shù)的極值問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不大于x的最大整數(shù),則函數(shù)f(x)=lg2x-[lgx]-2的零點個數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則φ=( 。
A、-
π
6
B、
π
6
C、-
π
3
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2-
1
x+1
-x(x>-1),若f(x)≤t2-2at+1大于所有的x∈(-1,+∞),a∈[-1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2
3
,PD=CD=2.
(1)求異面直線PA與BC所成角的正切值;
(2)證明平面PDC⊥平面ABCD;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xa•lnx,其中a∈Z.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=-1時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
x2+ax
ex
(a∈R).
(1)當(dāng)a=1時,證明:當(dāng)x≥0時,f(x)≥0;
(2)當(dāng)a=-1,證明:(1-
lnx
x
)f(x)>1-
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-p(x-1),p∈R.
(1)當(dāng)p=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=xf(x)+p(2x2-x-1)(x≥1),求證:當(dāng)p≤-
1
2
時,有g(shù)(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個盒子里裝有6張卡片,其中有紅色卡片4張,編號分別為1,2,3,4; 白色卡片2張,編號分別為1,2.
(1)從盒子中隨機抽取2張卡片,求兩張都是紅色的概率;
(2)從盒子中有放回的逐次抽取2張卡片,求兩張卡片的編號都為2的概率.

查看答案和解析>>

同步練習(xí)冊答案