設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[0,3]上的最大值是-7.求c的值.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)由導(dǎo)函數(shù)f'(x)=6x2+6ax+3b,且函數(shù)f(x)在x=1及x=2取得極值,則有f'(1)=0,f'(2)=0.從而a=-3,b=4.
(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).通過討論函數(shù)的單調(diào)性,從而得到當x=1時,f(x)取得極大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.則當x∈[0,3]時,f(x)的最大值為f(3)=9+8c=-7.進而求出c=-2.
解答: 解:(Ⅰ)f'(x)=6x2+6ax+3b,
∵函數(shù)f(x)在x=1及x=2取得極值,
則有f'(1)=0,f'(2)=0.
6+6a+3b=0
24+12a+3b=0
,
解得a=-3,b=4.
(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,
f'(x)=6x2-18x+12=6(x-1)(x-2).
當x∈(0,1)時,f'(x)>0;
當x∈(1,2)時,f'(x)<0;
當x∈(2,3)時,f'(x)>0.
∴當x=1時,f(x)取得極大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
則當x∈[0,3]時,f(x)的最大值為f(3)=9+8c=-7.
∴c=-2.
點評:本題考察了函數(shù)的單調(diào)性,函數(shù)的極值問題,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列角中終邊與390°相同的角是( 。
A、30°B、-30°
C、630°D、-630°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得利潤是100(2x+1-
3
x
)
元;
(1)要使生產(chǎn)產(chǎn)品2小時獲得利潤不低于1200元,求x的取值范圍;
(2)要使生產(chǎn)120千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為
x=
1
2
+
3
2
t
y=
1
2
+
1
2
t
(t為參數(shù)),點A的極坐標為(
2
2
,
π
4
),設(shè)直線l與圓C交于點P、Q.
(1)寫出圓C的直角坐標方程;
(2)求|AP|•|AQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax+3)ex,其中e自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間
(2)設(shè)函數(shù)g(x)=
1
2
x-lnx+t.當a=-1時,存在x∈(0,+∞)使得f(x)≥g(x)成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊在直線y=
3
x上,求α的正弦,余弦的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項a1=
3
2
,前n項和為Sn,且滿足2an+1+Sn=3,( n∈N+
(Ⅰ)求a2及an;
(Ⅱ)設(shè)cn=n(
3+an
an
),n∈N*,數(shù)列{cn}的前n項和為Tn;若存在n∈N*且n≥3,使不等式Tn≤λ成立,求λ范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3-
1
2
x2,則f(x)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一枚硬幣連擲5次,已知每次拋擲后正面向上與反面向上的概率均為
1
2
,如果出現(xiàn)k次正面向上的概率等于出現(xiàn)k+1次正面向上的概率,那么k的值為
 

查看答案和解析>>

同步練習(xí)冊答案