【題目】圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點(diǎn)F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設(shè)∠FMH

(1)求屋頂面積S關(guān)于的函數(shù)關(guān)系式;

(2)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價(jià)與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?

【答案】(1);(2)當(dāng)時(shí)該別墅總造價(jià)最低

【解析】

(1)由題知FHHM,在RtFHM中,所以,得△FBC的面積,從而得到屋頂面積;(2)別墅總造價(jià)為=,求導(dǎo)求最值即可

1)由題意FH⊥平面ABCDFMBC,

又因?yàn)?/span>HM 平面ABCD,得FHHM

RtFHM中,HM 5,所以

因此△FBC的面積為

從而屋頂面積

所以S關(guān)于的函數(shù)關(guān)系式為()

2)在RtFHM中,,所以主體高度為

所以別墅總造價(jià)為

,

所以

,得,又,所以

列表:

0

所以當(dāng)時(shí),有最小值.

答:當(dāng)img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/26/08/947417a4/SYS201905260820246408592582_DA/SYS201905260820246408592582_DA.003.png" width="9" height="33" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />時(shí)該別墅總造價(jià)最低.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,記直線與曲線分別交于兩點(diǎn).

(1)求曲線的直角坐標(biāo)方程;

(2)證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為慶祝成立二十周年,特舉辦《快樂(lè)大闖關(guān)》競(jìng)技類有獎(jiǎng)活動(dòng),該活動(dòng)共有四關(guān),由兩名男職員與兩名女職員組成四人小組,設(shè)男職員闖過(guò)一至四關(guān)概率依次是,女職員闖過(guò)一至四關(guān)的概率依次是

(1)求女職員闖過(guò)四關(guān)的概率;

(2)設(shè)表示四人小組闖過(guò)四關(guān)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門(mén)統(tǒng)考科目和物理、化學(xué)等六門(mén)選考科目構(gòu)成.將每門(mén)選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).

某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,作棱錐,其中點(diǎn)在側(cè)棱所在直線上,,,的中點(diǎn).

1)證明:平面;

2)求為軸旋轉(zhuǎn)所圍成的幾何體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,把圓上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到曲線,且傾斜角為,經(jīng)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn).

(1)當(dāng)時(shí),求曲線的普通方程與直線的參數(shù)方程;

(2)求點(diǎn)兩點(diǎn)的距離之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式對(duì)任意實(shí)數(shù)都成立,則實(shí)數(shù)的取值范圍_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“水是生命之源”,但是據(jù)科學(xué)界統(tǒng)計(jì)可用淡水資源僅占地球儲(chǔ)水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸):一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬(wàn)居民,估計(jì)全市居民中月均用水量不低于2.5噸的人數(shù),并說(shuō)明理由;

(3)若該市政府希望使的居民每月的用水不按議價(jià)收費(fèi),估計(jì)的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角的對(duì)邊分別為,且成等差數(shù)列

1)若,求的面積

2)若成等比數(shù)列,試判斷的形狀

查看答案和解析>>

同步練習(xí)冊(cè)答案