18.求函數(shù)y=x2-2x+5,x∈[-1,2]的值域.

分析 推導出y=x2-2x+5=(x-1)2+4,由此能求出y=x2-2x+5,x∈[-1,2]的值域.

解答 解:∵y=x2-2x+5,x∈[-1,2],
∴y=x2-2x+5=(x-1)2+4,x∈[-1,2],
∴當x=1時,ymin=(1-1)2+4=4,
當x=-1時,${y}_{max}=(-1-1)^{2}+4$=8.
∴y=x2-2x+5,x∈[-1,2]的值域為[4,8].

點評 本題考查二次函數(shù)在閉區(qū)間上的值域的求法,是基礎題,解題時要認真審題,注意配方法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=lg(mx2+mx+1),若此函數(shù)的定義域為R,則實數(shù)m的取值范圍是[0,4);若此函數(shù)的值域為R,則實數(shù)m的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設隨機變量X服從正態(tài)分布N(0,1),對給定的a(0<a<1),數(shù)ua由P(X>ua)=α確定,若P(|X|<x)=α,則x等于( 。
A.u${\;}_{\frac{a}{2}}$B.u${\;}_{1-\frac{a}{2}}$C.u${\;}_{\frac{1-a}{2}}$D.u1-a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.直線$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$(t為參數(shù))的傾斜角的大小為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知二次函數(shù)f(x)=ax2+bx+c,若f(0)=f(6)<f(7),則f(x)在(  )
A.(-∞,0)上是增函數(shù)B.(0,+∞)上是增函數(shù)C.(-∞,3)上是增函數(shù)D.(3,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知平面α∥平面β,A,C∈α,B,D∈β,直線AB與CD交于點S,且AS=9,BS=8,CD=34,
(1)當S在α,β之間時,CS長多少?
(2)當S不在α,β之間時,CS長又是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.程序框圖如圖所示,其輸出的結果為(  )
A.2100-1B.299-1C.2100D.299

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.等差數(shù)列{an}中Sn是其前n項和,a1=-2010,$\frac{{{S_{2011}}}}{2011}$-$\frac{{{S_{2009}}}}{2009}$=2,則S2010的值為( 。
A.-2009B.2009C.-2010D.2010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在底面是直角梯形的四棱錐P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
(1)求證:BC⊥平面PAB;
(2)求面PCD與面PAB所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案