【題目】為了得到函數(shù)y=3cos2x的圖象,只需把函數(shù)y=3sin(2x+ )的圖象上所有的點(diǎn)( )
A.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
D.向左平移移動(dòng) 個(gè)單位長(zhǎng)度
【答案】C
【解析】解:∵y=3cos2x=3sin(2x+ )=3sin[2(x+ )+ ],
∴把函數(shù)y=3sin(2x+ )的圖象上所有的向左平移 個(gè)單位,可得函數(shù)y=3cos2x的圖象,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求實(shí)數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,過點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點(diǎn)共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】氣象意義上從春季進(jìn)入夏季的標(biāo)志為連續(xù)5天的日平均溫度均不低于22℃.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù):(記錄數(shù)據(jù)都是正整數(shù))
①甲地5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地5個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8.
則肯定進(jìn)入夏季的地區(qū)有_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求證:平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三角形三邊的長(zhǎng)度為連續(xù)的三個(gè)自然數(shù),則稱這樣的三角形為“連續(xù)整邊三角形”。下列說法正確的是( )
A. “連續(xù)整邊三角形”只能是銳角三角形
B. “連續(xù)整邊三角形”不可能是鈍角三角形
C. 若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形有且僅有1個(gè)
D. 若“連續(xù)整邊三角形”中最大角是最小角的2倍,則這樣的三角形可能有2個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當(dāng)x>0時(shí),函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心在軸上,且與過原點(diǎn)傾斜角為的直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在直線上,過點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過、、、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com