19.當(dāng)x$≥\frac{5}{2}$時(shí),不等式$\frac{{x}^{2}-4x+5}{2x-4}$≥a恒成立,則實(shí)數(shù)a的取值范圍是(-∞,1].

分析 x$≥\frac{5}{2}$,變形為$\frac{{x}^{2}-4x+5}{2x-4}$=$\frac{(x-2)^{2}+1}{2(x-2)}$=$\frac{1}{2}(x-2+\frac{1}{x-2})$,再利用基本不等式的性質(zhì)即可得出.

解答 解:∵x$≥\frac{5}{2}$,
$\frac{{x}^{2}-4x+5}{2x-4}$=$\frac{(x-2)^{2}+1}{2(x-2)}$=$\frac{1}{2}(x-2+\frac{1}{x-2})$$≥\frac{1}{2}×2\sqrt{(x-2)•\frac{1}{x-2}}$=1,當(dāng)且僅當(dāng)x=3時(shí)取等號(hào).
∵當(dāng)x$≥\frac{5}{2}$時(shí),不等式$\frac{{x}^{2}-4x+5}{2x-4}$≥a恒成立,
∴a≤1,
∴實(shí)數(shù)a的取值范圍是(-∞,1].
故答案為:(-∞,1].

點(diǎn)評(píng) 本題考查了變形利用基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x+a,若x∈[0,$\frac{π}{2}$],且|f(x)|<2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$,若f(x)是定義在區(qū)間[a-6,2a]上的奇函數(shù),則f($\frac{a}{2}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.y=$\sqrt{sinx}$的定義域?yàn)閧x|2kπ≤x≤π+2kπ,k∈Z},單調(diào)遞增區(qū)間為[2kπ,$\frac{π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=tan(x+φ)的圖象的-個(gè)對(duì)稱中心為($\frac{π}{3}$,0)且,|φ|<$\frac{π}{2}$.則φ=$\frac{π}{6}$或-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若函數(shù)f(x)=$\sqrt{5}$sin(2x+φ)對(duì)任意x都有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x).
(1)求f($\frac{π}{3}$)的值;
(2)求φ的最小正值;
(3)當(dāng)φ取最小正值時(shí),若x∈[-$\frac{π}{6}$,$\frac{π}{6}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)y=f1(x)是定義域?yàn)镽的增函數(shù),y=f2(x)是定義域?yàn)镽的減函數(shù),則(  )
A.函數(shù)y=f1(x)+f2(x)是定義城為R的增函數(shù)
B.函數(shù)y=f1(x)+f2(x)是定義城為R的減函數(shù)
C.函數(shù)y=f1(x)-f2(x)是定義城為R的增函數(shù)
D.函數(shù)y=f1(x)-f2(x)是定義城為R的減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.log2${\;}_{\frac{1}{2}}$x-$\frac{1}{4}$≤0,則x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.2(3$\overrightarrow{a}$-$\overrightarrow$+2$\overrightarrow{c}$)-3($\overrightarrow{a}$-2$\overrightarrow$+3$\overrightarrow{c}$)=$3\overrightarrow{a}$$+4\overrightarrow$$-5\overrightarrow{c}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案