已知直線y=kx+1與曲線y=x3+ax+b切于點(diǎn)(1,3),則a,b的值分別為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:因?yàn)椋?,3)是直線與曲線的交點(diǎn),所以把(1,3)代入直線方程即可求出斜率k的值,然后利用求導(dǎo)法則求出曲線方程的導(dǎo)函數(shù),把切點(diǎn)的橫坐標(biāo)x=1代入導(dǎo)函數(shù)中得到切線的斜率,讓斜率等于k列出關(guān)于a的方程,求出方程的解得到a的值,然后把切點(diǎn)坐標(biāo)和a的值代入曲線方程,即可求出b的值.
解答: 解:把(1,3)代入直線y=kx+1中,得到k=2,
求導(dǎo)得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=-1,
把(1,3)及a=-1代入曲線方程得:1-1+b=3,
則b的值為3.
故答案為:-1和3.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將數(shù)列{an}按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,并同時(shí)滿足以下兩個(gè)條件:①各行的第一個(gè)數(shù)a1,a2,a5,…構(gòu)成公差為d的等差數(shù)列;②從第二行起,每行各數(shù)按從左到右的順序都構(gòu)成公比為q的等比數(shù)列.若a1=1,a3=4,a5=3.
(Ⅰ)求d,q的值;
(Ⅱ)求第n行各數(shù)的和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=ax2+bx+c(a>0)對(duì)任意的實(shí)數(shù)x,都有f(1+x)=4f(
x
2
)成立.
(1)求
b
a
c
a
的值;
(2)解關(guān)于x的不等式f(x)<4a;
(3)若f(0)=1且關(guān)于α不等式f(sinα)≤sinα+m恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∈R,函數(shù)f(x)=x2-2alnx.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和最值;
(2)若a>0,試證明:“方程f(x)=2ax有唯一解”的充要條件是“a=
1
2
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x-
2
x
-a
的一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,2]上隨機(jī)取一個(gè)數(shù)x,使|x+1|-|x-1|≤1成立的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=
2n+1,n=2m-1
2n,n=2m
,m為正整數(shù),前n項(xiàng)和為Sn,則S5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.若a=
2
,b=2,sinB+cosB=
2
,則角C的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=-
5
4
,則sinαcosα=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案