【題目】函數(shù) 的定義域是;若函數(shù) 的最大值為 ,則實(shí)數(shù)

【答案】;5
【解析】函數(shù) 中, ,解得: ,所以定義域?yàn)? .
,則 .
所以 .因?yàn)? 的最大值為 ,將 代入 ,解得 .
經(jīng)檢驗(yàn)滿足題意.
【考點(diǎn)精析】掌握函數(shù)的定義域及其求法和函數(shù)的值域是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實(shí)數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2﹣x),當(dāng)x∈[﹣2,0]時,f(x)=( x﹣1,若在區(qū)間(﹣2,6)內(nèi)關(guān)于x的方程f(x)﹣log a(x+2)=0,恰有4個不同的實(shí)數(shù)根,則實(shí)數(shù)a(a>0,a≠1)的取值范圍是( )
A.( ,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 .
(1)試求曲線C在點(diǎn) 處的切線方程;
(2)試求與直線 平行的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為A、B、C的對邊,且滿足2(a2﹣b2)=2accosB+bc
(1)求A
(2)D為邊BC上一點(diǎn),CD=3BD,∠DAC=90°,求tanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(
A.f(x)=x3
B.f(x)=x
C.f(x)=3x
D.f(x)=( x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實(shí)數(shù)a,b的值.
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:
①整數(shù)集可以表示為{x|x為全體整數(shù)}或{ };
②方程組 的解集為 {x=3,y=1};
③集合{x∈N|x2=1}用列舉法可表示為{1,1};
④集合 是無限集.
其中正確的是 ( )
A.①和③
B.②和④
C.④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣m存在4個不同的零點(diǎn)x1 , x2 , x3 , x4 , 則實(shí)數(shù)m的取值范圍是 , x1x2x3x4的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案