4.函數(shù)f(x)=|ex-bx|,其中e為自然對數(shù)的底.
(1)當b=1時,求曲線f(x)在x=1處的切線方程;
(2)若函數(shù)y=f(x)有且只有一個零點,求實數(shù)b的取值范圍.

分析 (1)記g(x)=ex-bx,當b=1時,g′(x)=ex-1,從而可得f′(1)=g′(1)=e-1,由此可求切線方程;
(2)f(x)=0同解于g(x)=0,因此,只需g(x)=0有且只有一個解,即方程ex-bx=0有且只有一個解,因為x=0不滿足方程,所以方程同解于b=$\frac{{e}^{x}}{x}$,分類討論可得當x∈(0,+∞)時,方程有且只有一解等價于b=e;當x∈(-∞,0)時,方程有且只有一解等價于b∈(-∞,0),從而可得b的取值范圍.

解答 解:(1)記g(x)=ex-bx.
當b=1時,g′(x)=ex-1.
當x>0時,g′(x)>0,所以g(x)在(0,+∞)上為增函數(shù).
又g(0)=1>0,所以當x∈(0,+∞)時,g(x)>0.
所以當x∈(0,+∞)時,f(x)=|g(x)|=g(x),
所以f′(1)=g′(1)=e-1.
所以曲線y=f(x)在點(1,e-1)處的切線方程為:y-(e-1)=(e-1)(x-1),
即y=(e-1)x.  
(2)f(x)=0同解于g(x)=0,因此,只需g(x)=0有且只有一個解,
即方程ex-bx=0有且只有一個解.
因為x=0不滿足方程,所以方程同解于b=$\frac{{e}^{x}}{x}$.  
令h(x)=$\frac{{e}^{x}}{x}$,由h′(x)=$\frac{(x-1){e}^{x}}{{x}^{2}}$=0得x=1.
當x∈(1,+∞)時,h′(x)>0,h(x)單調(diào)遞增,h(x)∈(e,+∞);
當x∈(0,1)時,h′(x)<0,h(x)單調(diào)遞減,h(x)∈(e,+∞);
所以當x∈(0,+∞)時,方程b=$\frac{{e}^{x}}{x}$有且只有一解等價于b=e.
當x∈(-∞,0)時,h(x)單調(diào)遞減,且h(x)∈(-∞,0),
從而方程b=$\frac{{e}^{x}}{x}$有且只有一解等價于b∈(-∞,0).
綜上所述,b的取值范圍為(-∞,0)∪{e}.

點評 本題考查導(dǎo)數(shù)知識的運用:求切線方程和函數(shù)的單調(diào)性,考查函數(shù)的零點問題,注意運用轉(zhuǎn)化思想,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知角θ的終邊上一點坐標為(3,-4),則cos(π-2θ)的值是$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線的方程為x2=8y,F(xiàn)是焦點,點A(-2,4),在此拋物線上求一點P,使|PF|+|PA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點,M為橢圓上任意一點,且2|F1F2|-|MF1|=|MF2|,過橢圓焦點垂直于長軸的半弦長為$\frac{3}{2}$.
(1)求橢圓E的方程;
(2)若存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點A,B,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C:y2=-4x(x>-3),直線l過點M(1,0)交曲線C于A,B兩點,點P是AB的中點,EP是AB的中垂線,E點的坐標為(x0,0),試求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,直四棱柱ABCD-A1B1C1D1底面是梯形,AB∥CD,DD1=AB=$\frac{1}{2}$CD,P,Q分別為棱CC1,C1D1的中點,求證:AC∥平面BPQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.使得函數(shù)y=2-3sinx取得最大值的x的集合是{x|x=2kπ-$\frac{π}{2}$,k∈Z},函數(shù)的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=$\frac{y+1}{x}$的取值范圍是[1,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知動點P到點F(2$\sqrt{2}$,0)的距離與到直線x=$\frac{9\sqrt{2}}{4}$的距離之比為$\frac{2\sqrt{2}}{3}$,動點P的軌跡為曲線C.
(1)求曲線C的方程
(2)若P在曲線C上,F(xiàn)1,F(xiàn)2分別為曲線C的左右焦點,且滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=t,求實數(shù)t的取值范圍.
(3)過點Q(1,0)作直線l(不與x軸垂直)與曲線C交于M,N兩點,與y軸交于R,若$\overrightarrow{RM}$=$λ\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,試判斷λ+μ是否為定值,并說明理由.

查看答案和解析>>

同步練習冊答案