【題目】已知點F是拋物線的焦點,若點在拋物線C上,且

1)求拋物線C的方程;

2)動直線與拋物線C相交于兩點,問:在x軸上是否存在定點(其中),使得x軸平分?若存在,求出點D的坐標;若不存在,請說明理由.

【答案】12)存在,

【解析】

1)根據(jù)焦半徑公式即可求出點的橫坐標,再根據(jù)點在拋物線C上,即可解出,進而得出拋物線C的方程;

2)假設(shè)在x軸上假設(shè)存在定點,設(shè)直線DADB的斜率分別為,,根據(jù)題意可知,.再聯(lián)立直線方程和拋物線方程,由根與系數(shù)的關(guān)系,得到,代入,即可判斷是否存在滿足題意的值.

拋物線的焦點為,準線方程為,

即有,即,則,解得,則;

x軸上假設(shè)存在定點(其中),因為x軸平分

設(shè),,聯(lián)立,得,

恒成立. ……

設(shè)直線DA、DB的斜率分別為,,則由得,

,

……

聯(lián)立,得,故存在滿足題意.

綜上,在x軸上存在一點,使得x軸平分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從正方體的6個面的對角線中,任取2條組成1對,則所成角是60°的有________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體的六個面的中心可構(gòu)成一個正八面體,現(xiàn)從正方體內(nèi)部任取一個點,則該點落在這個正八面體內(nèi)部的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“團購”已經(jīng)滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)

1)試計算2012年的快遞業(yè)務(wù)量;

2)分別將2013年,2014年,…,2017年記成年的序號t1,23,45;現(xiàn)已知yt具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程;

3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量

附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機構(gòu)隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.

1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;

(2)若從這10名購物者中隨機抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著現(xiàn)代電子技術(shù)的迅猛發(fā)展,關(guān)于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門新的學科——可靠性理論.在可靠性理論中,一個元件正常工作的概率稱為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱為該系統(tǒng)的可靠性.現(xiàn)有)種電子元件,每種2個,每個元件的可靠性均為).當某元件不能正常工作時,該元件在電路中將形成斷路.現(xiàn)要用這個元件組成一個電路系統(tǒng),有如下兩種連接方案可供選擇,當且僅當從AB的電路為通路狀態(tài)時,系統(tǒng)正常工作.

1)(i)分別寫出按方案①和方案②建立的電路系統(tǒng)的可靠性、(用表示);

ii)比較的大小,說明哪種連接方案更穩(wěn)定可靠;

2)設(shè),,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時系統(tǒng)中損壞的元件個數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與函數(shù))的圖象相交,將其中三個相鄰交點從左到右依次記為AB,C,且滿足有下列結(jié)論:

n的值可能為2

,且時,的圖象可能關(guān)于直線對稱

時,有且僅有一個實數(shù)ω,使得上單調(diào)遞增;

不等式恒成立

其中所有正確結(jié)論的編號為( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求曲線的公切線方程:

2)若有兩個極值點,,且,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數(shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.

(附:若隨機變量,則,

查看答案和解析>>

同步練習冊答案