5.據(jù)說(shuō)偉大的阿基米德死了以后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑.在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑與圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)在圓柱上底面的圓心,圓錐的底面是圓柱的下底面.試計(jì)算出圖形中圓錐、球、圓柱的體積比.

分析 設(shè)圓柱底面半徑為r,則球的半徑為r,圓柱和圓錐的高均為2r,代入幾何體體積公式計(jì)算即可.

解答 解:設(shè)圓柱底面半徑為r,則球的半徑為r,圓柱和圓錐的高均為2r,
∴V圓錐=$\frac{1}{3}$×πr2×2r=$\frac{2π{r}^{3}}{3}$,
V=$\frac{4π{r}^{3}}{3}$,
V圓柱=πr2×2r=2πr3,
∴V圓錐:V:V圓柱=$\frac{2}{3}$:$\frac{4}{3}$:2=1:2:3.

點(diǎn)評(píng) 本題考查了空間幾何體的體積,找到三個(gè)幾何體的關(guān)系是解題關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若α,β∈(0,π),則“α=β”是“cosα=cosβ”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,原點(diǎn)到過(guò)點(diǎn)A(-a,0),B(0,b)
的直線的距離是$\frac{{4\sqrt{5}}}{5}$.
(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線l與兩定直線l1:x-2y=0和l2:x+2y=0分別交于P,Q兩點(diǎn).若直線l總與橢圓C有且只有一個(gè)公共點(diǎn),試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)求函數(shù)$f(x)=\frac{{\sqrt{5-x}}}{{{{log}_2}x-2}}$的定義域;
(2)求函數(shù)$f(x)={log_a}(-{x^2}+2x+3)$(a>0,且a≠1)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+t\\ y=\sqrt{3}t\end{array}\right.(t為參數(shù))$,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C 的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出直線l的普通方程及圓C 的直角坐標(biāo)方程;
(2)點(diǎn)P是直線l上的,求點(diǎn)P 的坐標(biāo),使P 到圓心C 的距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.過(guò)點(diǎn)P(3,4)的直線與雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1只有一個(gè)交點(diǎn),則該直線方程為x=3或3x-4y+7=0或3x+4y-25=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.m、n∈R+,mn=2,問(wèn)2m+4n是否有最值?如有,請(qǐng)求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)0≤α≤π,不等式8x2-(8sinα)x+cos2α≤0有解,則α的取值范圍為[$\frac{π}{6},\frac{5π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將-1485°化成α+2kπ(0≤α<2π,k∈Z)的形式是(  )
A.-$\frac{π}{4}$-8πB.$\frac{7π}{4}$-8πC.$\frac{π}{4}$-10πD.$\frac{7π}{4}$-10π

查看答案和解析>>

同步練習(xí)冊(cè)答案