如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP,AQ長度之和為定值4,求S△APQ最大值.
考點:余弦定理的應用,基本不等式在最值問題中的應用
專題:三角函數(shù)的求值
分析:(1)∠A=60°,AP=1,AQ=3,由余弦定理即可求得PQ的長;(2))由AP+AQ≥2
AP•AQ
,得AP•AQ≤4從而S△APQ=
1
2
AP•AQsinA≤
1
2
•4•
3
2
=
3
解答: 解:(1)∵)∠A=60°,AP=1,AQ=3,
∴由余弦定理得:PQ2=PA2+AQ2-2AP•AQcos60°=1+9-2×1×3×
1
2
=7,
∴PQ=
7
;
(2)∵AP+AQ≥2
AP•AQ
,∴AP•AQ≤4
∴S△APQ=
1
2
AP•AQsinA≤
1
2
•4•
3
2
=
3
點評:本題考查余弦定理,關鍵在于熟練掌握余弦定理并靈活運用之,基本不等式的應用問題,本題是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a∈[1,6],b∈[1,6],曲線C:
|x|
a
+
|y|
b
=1,若x,y∈R,求曲線C所圍成區(qū)域的周長不小于8的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心C在x軸的正半軸,半徑為5,圓C被直線x-y+3=0截得的弦長為2
17

(1)求圓C的方程;
(2)設直線l:ax-y+5=0(a∈R).
①若圓C關于直線l對稱,求a的值;
②若直線l與圓C相交于A、B兩點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A=
2
-1,B=
3
-
2
,C=
4
-
3

(Ⅰ)試分別比較A與B、B與C的大。ㄖ灰獙懗鼋Y果,不要求證明過程);
(Ⅱ)根據(jù)(Ⅰ)的比較結果,請推測出
k
-
k-1
k+1
-
k
(k≥2,k∈N*)的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<-2或x>3},B={x|4x+m<0}.當A?B時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R).
(1)當y=f(x)在點(2,f(2))處的切線方程是y=x+ln2時,求a的值.
(2)當y=f(x)的單調遞增區(qū)間是(1,5)時,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,存在常數(shù)A,B,C,使得an+Sn=An2+Bn+C對任意正整數(shù)n都成立.
(1)若數(shù)列{an}為等差數(shù)列,求證:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1,設bn=an+n,數(shù)列{nbn}的前n項和為Tn,求Tn
(3)若C=0,{an}是首項為1的等差數(shù)列,設cn=
1+
2
an2
+
1
an+12
數(shù)列{cn}的前2014項和為P,求不超過P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,半圓O的直徑AB的長為4,點C平分弧AE,過C作AB的垂線交AB于D,交AE干F.
(Ⅰ)求證:CE2=AE•AF:
(Ⅱ)若AE是∠CAB的角平分線,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,定義在區(qū)間(b,3b-a)上的函數(shù)f(x)=
2x+
a
2
2x+1
是奇函數(shù),
(1)求b的值;
(2)判斷函數(shù)f(x)的單調性,并證明之;
(3)解關于x的不等式:f(2x-
1
2
)+f(
1
4
)<f(0).

查看答案和解析>>

同步練習冊答案