設(shè)全集U=R,集合A={-2,-1},B={x|(x+1)(x-2)<0},則A∩∁UB=( 。
A、{-2,-1}
B、{-2,1}
C、{-1,1}
D、{-2,-1,1}
考點:交、并、補集的混合運算
專題:集合
分析:解一元二次不等式求得B,根據(jù)補集的i定義求得∁UB,再根據(jù)兩個集合的交集的定義求得A∩∁UB.
解答: 解:∵集合A={-2,-1},B={x|(x+1)(x-2)<0}={x|-1<x<2},
∴∁UB={x|x≤-1,或 x≥2}
則A∩∁uB={-2,-1},
故選:A.
點評:本題主要考查集合的表示方法、集合的補集,兩個集合的交集、并集的定義和求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,4),
b
=(2,-1),如果向量
a
-x
b
b
垂直,則x的值為( 。
A、
23
3
B、
3
23
C、
2
5
D、-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x-
1
x
n的展開式的各個二項式系數(shù)之和為64,則在(2x-
1
x
n的展開式中,常數(shù)項為( 。
A、-120B、120
C、-60D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的邊長為2,則
AB
BC
=( 。
A、2
B、-2
C、2
3
D、-2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ln(x2+ax+1)的值域為R則實數(shù)a的取值范圍是( 。
A、(-2,2)
B、(-∞,-2)∪(2,+∞)
C、(-∞,-2]∪[2,+∞)
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a表示函數(shù)y=sinx(-π≤x≤π)與x軸圍成的圖形的面積,則復(fù)數(shù)z=
(-1+i)(a+i)
-i
(其中i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx+x-2,g(x)=xlnx+x-2在(1,+∞)上都有且只有一個零點,f(x)的零點為x1,g(x)的零點為x2,則( 。
A、1<x2<x1<2
B、1<x1<x2<2
C、1<x1<2<x2
D、2<x2<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(1,7),
OB
=(5,1),
OP
=(2,1),點Q為直線OP上一動點.
(Ⅰ)求|
OA
+
OB
|;
(Ⅱ)當(dāng)
QA
QB
取最小值時,求
OQ
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
m
=(2cosA,
3
sinA),
n
=(cosA,-2cosA),
m
n
=-1.
(1)若a=2
3
,c=2,求S△ABC
(2)求
b-2c
acos(
π+c
3
)
的值.

查看答案和解析>>

同步練習(xí)冊答案