分析 (Ⅰ)函數(shù)g(x)=f(x)+3x(x∈R)為奇函數(shù),g(-x)=f(-x)-3x=-g(x)=-f(x)-3x,可得f(-x)=-f(x),即可判斷函數(shù)f(x)的奇偶性;
(Ⅱ)若x>0時(shí),f(x)=log3x,求出x<0,x=0時(shí)的解析式,即可求函數(shù)g(x)的解析式.
解答 解:(Ⅰ)∵函數(shù)g(x)=f(x)+3x(x∈R)為奇函數(shù),
∴g(-x)=f(-x)-3x=-g(x)=-f(x)-3x,
∴f(-x)=-f(x)
∴函數(shù)f(x)是奇函數(shù);
(Ⅱ)設(shè)x<0,則-x>0,
∵x>0時(shí),f(x)=log3x,
∴f(-x)=log3(-x),
∵函數(shù)f(x)是奇函數(shù),
∴f(x)=-f(-x)=-log3(-x),
∵g(0)=0,
∴函數(shù)g(x)=$\left\{\begin{array}{l}{lo{g}_{3}x+3x,x>0}\\{0,x=0}\\{-lo{g}_{3}(-x)+3x,x<0}\end{array}\right.$.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,函數(shù)解析式的確定,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{8}$ | B. | -8 | C. | $\frac{1}{8}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)(2) | B. | (1)(4) | C. | (3)(4) | D. | (2)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinA=-sin(B十C) | B. | cosA=-cos(B+C) | C. | tanA=-tan(B+C) | D. | cos(A+B)+cosC=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com