【題目】已知函數(shù).

1)若,且上單調(diào)遞減,求的取值范圍;

2)若,且在區(qū)間恒成立,求的取值范圍;

3)當(dāng)時(shí),求證:在區(qū)間至少存在一個(gè),使得.

【答案】1;(2;(3)證明見(jiàn)解析.

【解析】

1)根據(jù)二次函數(shù)在區(qū)間上單調(diào)遞減得出,進(jìn)而可求得實(shí)數(shù)的取值范圍;

2)由題意得出對(duì)任意的恒成立,利用參變量分離法得出,求出函數(shù)上的最大值,即可得出實(shí)數(shù)的取值范圍;

3)利用反證法,假設(shè)對(duì)任意的,均有,根據(jù)題意得出,推出矛盾即可.

1)當(dāng)時(shí),,該二次函數(shù)的圖象開(kāi)口向上,對(duì)稱(chēng)軸為直線(xiàn)

由于函數(shù)單調(diào)遞減,則有,解得.

因此,實(shí)數(shù)的取值范圍是;

2)由題可知恒成立,則,

,則二次函數(shù)時(shí)單調(diào)遞減,

當(dāng)時(shí),函數(shù)取得最大值,即,

因此,實(shí)數(shù)的取值范圍是;

3)由題可知,且,函數(shù)開(kāi)口向上,對(duì)稱(chēng)軸,

單調(diào)遞減,其值域?yàn)?/span>,

若不存在使得,即對(duì)任意都有,

,可得,即,與矛盾.

故必存在,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,短軸長(zhǎng)為2,過(guò)定點(diǎn)的直線(xiàn)交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn),之間).

1)求橢圓的方程;

2)若,求實(shí)數(shù)的取值范圍;

3)若射線(xiàn)交橢圓于點(diǎn)為原點(diǎn)),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(e為目然對(duì)數(shù)的底數(shù)).

(1)設(shè)函數(shù),求函數(shù)的最小值;

(2)若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ex+asinx,x(π+),下列說(shuō)法正確的是(

A.當(dāng)a=1時(shí),f(x)(0,f(0))處的切線(xiàn)方程為2xy+1=0

B.當(dāng)a=1時(shí),f(x)存在唯一極小值點(diǎn)x0且-1f(x0)0

C.對(duì)任意a0,f(x)(π,+)上均存在零點(diǎn)

D.存在a0,f(x)(π+)上有且只有一個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱中的底面為等腰直角三角形,,點(diǎn)分別是邊,上動(dòng)點(diǎn),若直線(xiàn)平面,點(diǎn)為線(xiàn)段的中點(diǎn),則點(diǎn)的軌跡為  

A. 雙曲線(xiàn)的一支一部分 B. 圓弧一部分

C. 線(xiàn)段去掉一個(gè)端點(diǎn) D. 拋物線(xiàn)的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績(jī)中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.

(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線(xiàn);

(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間各抽取多少人?

(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予800元獎(jiǎng)勵(lì),用Y表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求Y的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖公園里有一湖泊,其邊界由兩條線(xiàn)段和以為直徑的半圓弧組成,其中為2百米,若在半圓弧,線(xiàn)段,線(xiàn)段上各建一個(gè)觀賞亭,再修兩條棧道,使. 記

(1)試用表示的長(zhǎng);

(2)試確定點(diǎn)的位置,使兩條棧道長(zhǎng)度之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖是某校高三(1)班的一次數(shù)學(xué)知識(shí)競(jìng)賽成績(jī)的莖葉圖(圖中僅列出的數(shù)據(jù))和頻率分布直方圖.

(1)求分?jǐn)?shù)在的頻率及全班人數(shù);

(2)求頻率分布直方圖中的;

(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名射手互不影響地進(jìn)行射擊訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),他們射擊成績(jī)的分布列如下表所示.

射手甲

射手乙

環(huán)數(shù)

環(huán)數(shù)

概率

概率

1)若甲射手共有發(fā)子彈,一旦命中環(huán)就停止射擊,求他剩余發(fā)子彈的概率;

2)若甲、乙兩名射手各射擊,次射擊中恰有次命中環(huán)的概率;

3)若甲、乙兩名射手各射擊,記所得的環(huán)數(shù)之和為,的概率分布.

查看答案和解析>>

同步練習(xí)冊(cè)答案