已知函數(shù)f(x)=2x+
x+1
,求f(3)=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)的表達式直接令x=3,代入即可得到結(jié)論.
解答: 解:∵f(x)=2x+
x+1

∴f(3)=23+
3+1
=8+
4
=8+2=10,
故答案為:10.
點評:本題主要考查函數(shù)值的計算,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BCD中,BA=BD,AD⊥CD,E、F分別為AC、AD的中點.
(Ⅰ)求證:EF∥平面BCD;
(Ⅱ)求證:平面EFB⊥平面ABD;
(Ⅲ)若BC=BD=CD=AD=2,AC=2
2
,求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,PA⊥平面ABCD,△ABC為等邊三角形,AP=AB,AC⊥CD,M為AC的中點.
(Ⅰ)求證:BM∥平面PCD;
(Ⅱ)若直線PD與平面PAC所成角的正切值為
6
2
,求二面角A-PD-M的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標分為:指標大于或等于90為一等品,大于或等于80小于90為二等品,小于80為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利30元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標 [70,75] [75,80) [80,85) [85,90) [90,95) [95,100)
3 7 20 40 20 10
5 15 35 35 7 3
根據(jù)上表統(tǒng)計得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-1的反函數(shù)為y=f-1(x),記g(x)=f-1(x-1)
(1)求函數(shù)y=2f-1(x)-g(x)的最小值;
(2)集合A={x|[1+f(x)]•|f(x)|≥2},對于任意的x∈A,不等式2f-1(x+m)-g(x)≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線x2=3y上兩點A,B的橫坐標恰是方程x2+5x+1=0的兩個實根,則直線AB的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+sinx,若0≤θ≤
π
2
時,f(mcosθ)+f(1-m)>0恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2
3
sin(ωx+φ)(ω>0,0<φ<
π
2
)部分圖象如圖所示,A為圖象的最高點,B、C 為圖象與x軸的交點,且△ABC為正三角形.φ的終邊經(jīng)過點(1,
3
),則ω=
 
φ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,若a1=5,a4=-40,則a6的值為
 

查看答案和解析>>

同步練習冊答案