對于任意的x∈R,a2x2+ax+1>0恒成立,則a的取值范圍是( 。
A、a<0B、a≤0
C、a>0D、a∈R
考點:函數(shù)恒成立問題
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:分a=0,a≠0兩種情況進行討論,當(dāng)a=0時易判斷;當(dāng)a≠0時由△<0,即可得出結(jié)論.
解答: 解:(1)當(dāng)a=0時,不等式為1>0,恒成立;
(2)當(dāng)a≠0時,設(shè)f(x)=a2x2+ax+1,其圖象開口向上,要滿足題意,則△=a2-4a2<0,恒成立.
綜上,a的取值范圍為a∈R.
故選:D.
點評:本題考查函數(shù)恒成立問題,考查數(shù)形結(jié)合思想,關(guān)于二次函數(shù)恒成立問題,往往采取數(shù)形結(jié)合思想進行解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費觀.樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為( 。
A、780B、660
C、680D、460

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=-
1
3
,則cos(
π
2
-
α)的值等于( 。
A、
2
2
3
B、-
2
3
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列統(tǒng)計圖中,未丟失數(shù)據(jù)的統(tǒng)計圖是( 。
A、莖葉圖B、條形圖
C、折線圖D、扇形圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<y<x<
π
2
,且tan2x=3tan(x-y),則x+y的可能取值是( 。
A、
π
6
B、
π
5
C、
π
4
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列語句不是命題的是( 。
A、新津中學(xué)是一所國家級示范校
B、如果這道題做不好,那么這次考試成績不理想
C、?x0∈R,使得lnx0<0
D、走出去!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在x∈Z,使x3-2x+m≥0”的否定是( 。
A、存在x∈Z,使x3-2x+m≤0
B、不存在x∈Z,使x3-2x+m≥0
C、對任意的x∈Z,使x3-2x+m≥0
D、對任意的x∈Z,使x3-2x+m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求最大公約數(shù)
(1)840與1785(用輾轉(zhuǎn)相除法)
(2)612與468(用更相減損術(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|x2+y2-4x-14y+45<0},B={(x,y)|y>|x-m|+7}.
(1)若A∩B≠∅,求m的取值范圍;
(2)若點Q的坐標(biāo)為(m,7),且Q∈A,集合A,B所表示的兩個平面區(qū)域的邊界交于點M,N,求△QMN的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案