已知f(x)=x2+2xf′(0),則f′(2)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),令x=0,先求出f′(0)的值,即可得到結(jié)論.
解答: 解:∵f(x)=x2+2x f′(0),
∴f′(x)=2x+2f′(0),
令x=0,則f′(0)=2f′(0)
即f′(0)=0,
則f′(x)=2x,
則f′(2)=2×2=4,
故答案為:4
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x,x<1
log4x,x≥1
,則f(f(3))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2+2ax+3+2a
的值域?yàn)閇0,+∞),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由下列命題構(gòu)成的“p或q”、“p且q”、“非p”三種形式的命題中,正確的命題個(gè)數(shù)有
 
個(gè).p:方程x2+x-2=0的解是x=-2;q:方程x2+x-2=0的解是x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a>0,b>0,則,a3+b3
 
a2b+ab2(用≤,≥,<,>填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下五個(gè)結(jié)論:
①不存在α∈(0,
π
2
),使sinα+cosα=
1
3
;
②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在其定義域內(nèi)為增函數(shù);
④函數(shù)y=lgx-sinx只有一個(gè)零點(diǎn);
⑤y=sin|2x+
π
6
|的最小正周期為π.
其中正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=cos2x+
3
x的所有正的極大值點(diǎn)從小到大依次排成數(shù)列{xn},θn=x1+x2+…+xn,則下列命題正確的是
 
(寫出你認(rèn)為正確的所有命題的序號(hào))
①函數(shù)f(x)=cos2x+
3
x在x=
π
3
處取得極大值;
②數(shù)列{xn}是等差數(shù)列;
③sinθn≥sinθn+1對(duì)于任意正整數(shù)n恒成立;
④存在正整數(shù)T,使得對(duì)于任意正整數(shù)n,都有sinθn=sinθn+T成立;
⑤n取所有的正整數(shù),sinθn的最大值為
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a13+a14=20,a15+a16=16,則S28=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin
x
2
的最小正周期是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案