A. | g(x)=$\sqrt{2}$sin(2x+$\frac{3π}{8}$) | B. | g(x)=$\sqrt{2}$cos2x | C. | g(x)=$\sqrt{2}$cos(2x+$\frac{3π}{8}$) | D. | g(x)=$\sqrt{2}$sin2x |
分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得f(x)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式.
解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ≤$\frac{π}{2}$)的圖象,
可得A=$\sqrt{2}$,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{8}-\frac{3π}{8}$,求得ω=2,
再根據(jù)五點(diǎn)法作圖可得2×$\frac{3π}{8}$+φ=π,求得φ=$\frac{π}{4}$,故f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$).
將f(x)的圖象向左平移$\frac{π}{8}$個(gè)單位后得到函數(shù)g(x)=$\sqrt{2}$sin[2(x+$\frac{π}{8}$)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x+$\frac{π}{2}$)=$\sqrt{2}$cos2x 的圖象,
故選:B.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件 | |
B. | 若p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0 | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | “若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
工作時(shí)間x | 3 | 5 | 6 | 7 | 9 |
月推銷金額y | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com