分析 (1)直接由數(shù)量積的坐標(biāo)運(yùn)算求得f(x)=$\overrightarrow{a}$•$\overrightarrow$-1,利用輔助角公式化積后求得f(x)=$\overrightarrow{a}$•$\overrightarrow$-1的最小正周期;
(2)在(1)中求出的函數(shù)解析式內(nèi),由x的范圍求得f(x)的最大值,并得到f(x)取最大值時(shí)x的值.
解答 解:(1)∵$\overrightarrow{a}$=(2cosx,cosx),$\overrightarrow$=(cosx,2sinx),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$-1=2cos2x+2sinxcosx-1=$sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$.
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$-1的最小正周期為$\frac{2π}{2}=π$;
(2)$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,
∵x∈[$\frac{π}{8}$,$\frac{5π}{8}$],∴2x+$\frac{π}{4}$∈[$\frac{π}{2},\frac{3π}{2}$].
∴當(dāng)2x+$\frac{π}{4}$=$\frac{π}{2}$,即x=$\frac{π}{8}$時(shí),$f(x)_{max}=\sqrt{2}$.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了三角函數(shù)最值的求法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a2+b2≠0,則a≠0,b≠0 | B. | 若a2+b2≠0,則a≠0或b≠0 | ||
C. | 若a2+b2=0,則a≠0,b≠0 | D. | 若a2+b2=0,則a≠0或b≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com