6.下面命題:
①冪函數(shù)圖象不過第四象限;
②y=x0圖象是一條直線;
③若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
④若函數(shù)$y=\frac{1}{x}$的定義域是{x|x>2},則它的值域是$\left\{{y\left|{y<\frac{1}{2}}\right.}\right\}$;
⑤若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2},
其中不正確命題的序號(hào)是②③④⑤.

分析 根據(jù)函數(shù)的性質(zhì)以及函數(shù)定義域值域等性質(zhì)分別進(jìn)行判斷即可.

解答 解:①冪函數(shù)圖象不過第四象限,正確;
②y=x0圖象是一條直線,錯(cuò)誤,函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞),函數(shù)的圖象為兩條射線;
③若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|0<y≤1};錯(cuò)誤
④若函數(shù)$y=\frac{1}{x}$的定義域是{x|x>2},則它的值域是{y|0<y<$\frac{1}{2}$};故錯(cuò)誤;
⑤若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2},錯(cuò)誤,當(dāng)定義域?yàn)閧x|0≤x≤2}時(shí),值域也是{y|0≤y≤4},
故不正確命題的序號(hào)②③④⑤,
故答案為:②③④⑤

點(diǎn)評(píng) 本題主要考查命題的真假判斷,利用函數(shù)的性質(zhì)以及函數(shù)定義域,值域,單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知不等式x(x+a)≤b的解集是{x|0≤x≤1},那么a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)A={3},B={3,5},則下列表達(dá)關(guān)系不正確的是( 。
A.A?BB.A⊆BC.3∈BD.5⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(sinωx+$\sqrt{3}$cosωx,1),$\overrightarrow{n}$=(2cosωx,-$\sqrt{3}$)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的兩條相鄰對(duì)稱軸間的距離為$\frac{π}{2}$,
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=loga(ax2-2x+1)在區(qū)間[2,3]是減函數(shù),則a取值范圍為($\frac{3}{4}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓M:x2+y2-4y+3=0,Q是x軸上動(dòng)點(diǎn),QA、QB分別切圓M于A、B兩點(diǎn),
(1)若|AB|=$\frac{4\sqrt{2}}{3}$,求直線MQ的方程;
(2)求四邊形QAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A,B在拋物線上,且滿足∠AFB=$\frac{2π}{3}$,過弦AB的中點(diǎn)P作拋物線準(zhǔn)線的垂線PM,垂足為M,則$\frac{|PM|}{|AB|}$的最大值為( 。
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(文)已知△ABC中,cosA=a,sinB=$\frac{4}{5}$,當(dāng)a滿足條件0時(shí),cosC具有唯一確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$f(x)=\frac{1}{{{2^x}-1}}+a$是奇函數(shù),且函數(shù)$g(x)={log_a}[m{x^2}-(m+5)x+12]$在[1,3]上為增函數(shù),則m的取值范圍是$\frac{1}{2}$<m≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案