分析 設(shè)sinA=m,sinB=n,由正弦定理和余弦定理分析出cosC有唯一確定值的方法.
解答 解:設(shè)sinA=m,sinB=n,由正弦定理$\frac{sinA}{a}=\frac{sinB}=\frac{sinC}{c}=k$,得到a=$\frac{sinA}{k}$=$\frac{m}{k}$,b=$\frac{4}{5k}$=$\frac{n}{k}$,c=$\frac{sinC}{k}$,
又由余弦定理得到cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{m}^{2}+{n}^{2}-1+co{s}^{2}C}{2mn}$,所以cos2C-2mncosC+(m2+n2-1)=0,
因為cosC具有唯一確定的值,所以判別式△=4m2n2-4(m2+n2-1)=0,
化簡得(m2-1)(n2-1)=0,由于m,n不能同時為1,所以m,n只有一個為1時,即三角形為直角三角形時,cosC有唯一確定的值;此時A=0;
故答案為:0.
點評 本題考查了正弦定理和余弦定理的運用;從方程判別式的角度求出cosC有唯一確定值的方法.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線 | B. | 拋物線 | C. | 兩條相交直線 | D. | 橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {x|-3≤x<-1,或x>1} | C. | {x|-3≤x≤-1,或x≥1} | D. | {x|x>1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{4}{5}$ | C. | ±$\frac{\sqrt{7}}{4}$ | D. | ±$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com