【題目】已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)若直線過點且與圓交于兩點(在軸上方,B在軸下方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.
【答案】(1)(2)當(dāng)點時, 能使得總成立
【解析】
試題分析:(1)設(shè)出圓心C坐標,根據(jù)直線l與圓C相切,得到圓心到直線l的距離d=r,確定出圓心C坐標,即可得出圓C方程;(2)當(dāng)直線AB⊥x軸,則x軸平分∠ANB,當(dāng)直線AB斜率存在時,設(shè)直線AB方程為y=k(x-1),聯(lián)立圓與直線方程,消去y得到關(guān)于x的一元二次方程,利用韋達定理表示出兩根之和與兩根之積,由若x軸平分∠ANB,則kAN=-kBN,求出t的值,確定出此時N坐標即可
試題解析:(1)設(shè)圓心,則或(舍).所以圓.
(2)當(dāng)直線軸時, 軸平分,當(dāng)直線的斜率存在時, 設(shè)直線的方程為,由得,, 若 軸平分,則,所以當(dāng)點時, 能使得總成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).
(I)求的分布列;
(II)若要求,確定的最小值;
(III)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過500件.
(1)設(shè)一次訂購量為件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;
(2)當(dāng)銷售商一次訂購多少件服裝時,該服裝廠獲得的利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求不等式a2x﹣1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知是定義在R上的奇函數(shù),且當(dāng)時, ,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[m,n]上的奇函數(shù),且f(x)在[m,n]上的最大值為a,則函數(shù)F(x)=f(x)+3在[m,n]上的最大值與最小值之和為( )
A.2a+3
B.2a+6
C.6-2a
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)用輾轉(zhuǎn)相除法求228與1995的最大公約數(shù).
(2)用秦九韶算法求多項式f(x)=+-8x+5在x=2時的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市的天氣預(yù)報中,有“降水概率預(yù)報”,例如預(yù)報“明天降水概率為90%”,這是指( )
A. 明天該地區(qū)約有90%的地方會降水,其余地方不降水
B. 明天該地區(qū)約90%的時間會降水,其余時間不降水
C. 氣象臺的專家中,有90%認為明天會降水,其余的專家認為不降水
D. 明天該地區(qū)降水的可能性為90%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝國慶,某中學(xué)團委組織了“歌頌祖國,愛我中華”知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(成績均為整數(shù))分成六段,,…,后畫出如圖的部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com