14.下列4個(gè)命題:
①命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”;
②若“?p或q”是假命題,則“p且?q”是真命題;
③若p:x(x-2)≤0,q:log2x≤1,則p是q的充要條件;
④若命題p:存在x∈R,使得2x<x2,則?p:任意x∈R,均有2x≥x2
其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 直接寫出命題的逆否命題判斷①;由復(fù)合命題的真假判斷判定②;求解不等式,然后結(jié)合充要條件的判斷方法判斷③;直接寫出特稱命題的否定判斷④.

解答 解:①命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”,①正確;
②若“?p或q”是假命題,則?p、q均為假命題,∴p、?q均為真命題,“p且?q”是真命題,②正確;
③由p:x(x-2)≤0,得0≤x≤2,
由q:log2x≤1,得0<x≤2,則p是q的必要不充分條件,③錯(cuò)誤;
④若命題p:存在x∈R,使得2x<x2,則?p:任意x∈R,均有2x≥x2,④正確.
∴正確的命題有3個(gè).
故選:C.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查了命題的否定、逆否命題,訓(xùn)練了充分必要條件的判斷方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖.在四棱錐P-ABCD中,∠PAD=90°,PA⊥CD.點(diǎn)M是棱PD的中點(diǎn).
(1)證明:平面PAB⊥平面ABCD;
(2)若底面ABCD是邊長為2的正方形,PA=2,求異面直線AP與BM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={x|x+2≤0或x-3≥0},B={x|2a-1≤x≤a+2},若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式中正確的是( 。
A.0=∅B.∅={0}C.0∈∅D.∅⊆{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人射擊一次命中目標(biāo)的概率為$\frac{1}{2}$,則此人射擊6次,3次命中且恰有2次連續(xù)命中的概率為( 。
A.C${\;}_{6}^{3}$($\frac{1}{2}$)6B.A${\;}_{4}^{2}$($\frac{1}{2}$)6C.C${\;}_{4}^{2}$($\frac{1}{2}$)6D.C${\;}_{4}^{1}$($\frac{1}{2}$)6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(x)是定義域在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(1)=( 。
A.3B.$\frac{5}{2}$C.-3D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:?x∈R,x2-2x>a;命題q:$?{x_0}∈R,{x_0}^2+2a{x_0}+2-a=0$.如果命題“p∨q”為真,“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=30.2,b=0.23,c=log0.23,則a,b,c的大小關(guān)系是(  )
A.a>c>bB.b>c>aC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知函數(shù)f(x)=loga(3x+1),g(x)=loga(1-3x),(a>0且a≠1).
(1)求函數(shù)F(x)=f(x)-g(x)的定義域;
(2)判斷F(x)=f(x)-g(x)的奇偶性,并說明理由4;
(3)確定x為何值時(shí),有f(x)-g(x)>0.

查看答案和解析>>

同步練習(xí)冊答案