為從甲、乙兩名運動員中選拔一人參加2010年廣州亞運會跳水項目,對甲、乙兩名運動員進行培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取6次,得出莖葉圖如圖所示.從平均成績及發(fā)揮穩(wěn)定性的角度考慮,你認為選派哪名運動員合適?
考點:莖葉圖
專題:概率與統(tǒng)計
分析:分別求出甲和乙的平均成績與方差,由此能求出結(jié)果.
解答: 解:
.
x
=
1
6
(78+79+81+84+93+95)=85,
S2=
1
6
[(78-85)2+(79-85)2+(81-85)2+(84-85)2+(93-85)2+(95-85)2]≈44.33.
.
x
=
1
6
(75+80+83+85+92+95)=85,
S2=
1
6
[(75-85)2+(80-85)2+(83-85)2+(85-85)2+(92-85)2+(95-85)2]≈46.33.
∵甲、乙二人的平均成績相等,但是甲的方差比乙的方差小,
∴甲發(fā)揮穩(wěn)定性好于乙,故選派甲運動員合適.
點評:本題考查平均數(shù)和方差的計算與應(yīng)用,是基礎(chǔ)題,解題時要注意莖葉圖的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)市場調(diào)查,某商品在最近的40天內(nèi)的價格f(t)與時間t滿足關(guān)系:f(t)=
1
2
t+11,(0≤t<20,t∈N)
41-t(20≤t≤40,t∈N)
.銷售量g(t)與時間t滿足關(guān)系:g(t)=-
1
3
t+
43
3
(0≤t≤40),其中t∈N.試問當t取何值時這種商品的日銷售額(銷售量與價格之積)最高?并求出最高日銷售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+
b
x
(a、b是正常數(shù))在區(qū)間(0,
b
a
)和(
b
a
,+∞)上的單調(diào)性(只需寫出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ax-2
(1)若a=-1,求函數(shù)f(x)在區(qū)間[-1,1]的最小值;
(2)若a∈R討論函數(shù)f(x)在(0,+∞)的單調(diào)性;
(3)若對于任意的x1,x2∈(0,+∞),且x1<x2,都有x2[f(x1)+a]<x1[f(x2)+a]成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)與過焦點且斜率為1的直線交于A,B兩點,若|AB|=2.
(1)求拋物線的方程;
(2)過點P(1,
2p
)作兩條直線PE,PF交拋物線于點E、F,若兩直線互相垂直,求證:EF恒過定點,并求出此點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三次函數(shù)f(x)=x3+bx2+cx+d(a,b,c∈R)過點(3,0),且函數(shù)f(x)在點(0,f(0))處的切線恰好是直線y=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=9x+m-1,若函數(shù)y=f(x)-g(x)在區(qū)間[-2,1]上有兩個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}是首項為19,公差為-2的等差數(shù)列
(1)求數(shù)列{an}的通項公式及前n項和Sn
(2)設(shè){bn-an}是以1為首項,以3為公比的等比數(shù)列,求{bn}的通項公式及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x3-6x2+3x+t)ex,t∈R.若函數(shù)y=f(x)依次在x=a,x=b,x=c(a<b<c)處取到極值.
(1)求t的取值范圍;
(2)若a+c=2b2,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+2cosx在[0,
π
2
]上的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案